4,369 research outputs found

    Wavefront Propagation and Fuzzy Based Autonomous Navigation

    Full text link
    Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments

    A robot swarm assisting a human fire-fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire-fighters. The large dimensions, together with the development of dense smoke that drastically reduces visibility, represent major challenges. The GUARDIANS robot swarm is designed to assist fire-fighters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting fire-fighters. We explain the swarming algorithms that provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus, the robot swarm is able to provide guidance information to the humans. Together with the fire-fighters we explored how the robot swarm should feed information back to the human fire-fighter. We have designed and experimented with interfaces for presenting swarm-based information to human beings

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    GUARDIANS final report part 1 (draft): a robot swarm assisting a human fire fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire fighters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist re ghters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting re ghters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus the robot swarm is able to provide guidance information to the humans. Together with the fire fighters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Behavioural strategy for indoor mobile robot navigation in dynamic environments

    Get PDF
    PhD ThesisDevelopment of behavioural strategies for indoor mobile navigation has become a challenging and practical issue in a cluttered indoor environment, such as a hospital or factory, where there are many static and moving objects, including humans and other robots, all of which trying to complete their own specific tasks; some objects may be moving in a similar direction to the robot, whereas others may be moving in the opposite direction. The key requirement for any mobile robot is to avoid colliding with any object which may prevent it from reaching its goal, or as a consequence bring harm to any individual within its workspace. This challenge is further complicated by unobserved objects suddenly appearing in the robots path, particularly when the robot crosses a corridor or an open doorway. Therefore the mobile robot must be able to anticipate such scenarios and manoeuvre quickly to avoid collisions. In this project, a hybrid control architecture has been designed to navigate within dynamic environments. The control system includes three levels namely: deliberative, intermediate and reactive, which work together to achieve short, fast and safe navigation. The deliberative level creates a short and safe path from the current position of the mobile robot to its goal using the wavefront algorithm, estimates the current location of the mobile robot, and extracts the region from which unobserved objects may appear. The intermediate level links the deliberative level and the reactive level, that includes several behaviours for implementing the global path in such a way to avoid any collision. In avoiding dynamic obstacles, the controller has to identify and extract obstacles from the sensor data, estimate their speeds, and then regular its speed and direction to minimize the collision risk and maximize the speed to the goal. The velocity obstacle approach (VO) is considered an easy and simple method for avoiding dynamic obstacles, whilst the collision cone principle is used to detect the collision situation between two circular-shaped objects. However the VO approach has two challenges when applied in indoor environments. The first challenge is extraction of collision cones of non-circular objects from sensor data, in which applying fitting circle methods generally produces large and inaccurate collision cones especially for line-shaped obstacle such as walls. The second challenge is that the mobile robot cannot sometimes move to its goal because all its velocities to the goal are located within collision cones. In this project, a method has been demonstrated to extract the colliii sion cones of circular and non-circular objects using a laser sensor, where the obstacle size and the collision time are considered to weigh the robot velocities. In addition the principle of the virtual obstacle was proposed to minimize the collision risk with unobserved moving obstacles. The simulation and experiments using the proposed control system on a Pioneer mobile robot showed that the mobile robot can successfully avoid static and dynamic obstacles. Furthermore the mobile robot was able to reach its target within an indoor environment without causing any collision or missing the target

    A 360 VR and Wi-Fi Tracking Based Autonomous Telepresence Robot for Virtual Tour

    Get PDF
    This study proposes a novel mobile robot teleoperation interface that demonstrates the applicability of a robot-aided remote telepresence system with a virtual reality (VR) device to a virtual tour scenario. To improve realism and provide an intuitive replica of the remote environment for the user interface, the implemented system automatically moves a mobile robot (viewpoint) while displaying a 360-degree live video streamed from the robot to a VR device (Oculus Rift). Upon the user choosing a destination location from a given set of options, the robot generates a route based on a shortest path graph and travels along that the route using a wireless signal tracking method that depends on measuring the direction of arrival (DOA) of radio signals. This paper presents an overview of the system and architecture, and discusses its implementation aspects. Experimental results show that the proposed system is able to move to the destination stably using the signal tracking method, and that at the same time, the user can remotely control the robot through the VR interface
    corecore