6 research outputs found

    Pattern recognition methods applied to medical imaging: lung nodule detection in computed tomography images

    Get PDF
    Lung cancer is one of the main public health issues in developed countries. The overall 5-year survival rate is only 10−16%, although the mortality rate among men in the United States has started to decrease by about 1.5% per year since 1991 and a similar trend for the male population has been observed in most European countries. By contrast, in the case of the female population, the survival rate is still decreasing, despite a decline in the mortality of young women has been ob- served over the last decade. Approximately 70% of lung cancers are diagnosed at too advanced stages for the treatments to be effective. The five-year survival rate for early-stage lung cancers (stage I), which can reach 70%, is sensibly higher than for cancers diagnosed at more advanced stages. Lung cancer most commonly manifests itself as non-calcified pulmonary nodules. The CT has been shown as the most sensitive imaging modality for the detection of small pulmonary nodules, particularly since the introduction of the multi-detector-row and helical CT technologies. Screening programs based on Low Dose Computed Tomography (LDCT) may be regarded as a promising technique for detecting small, early-stage lung cancers. The efficacy of screening programs based on CT in reducing the mortality rate for lung cancer has not been fully demonstrated yet, and different and opposing opinions are being pointed out on this topic by many experts. However, the recent results obtained by the National Lung Screening Trial (NLST), involving 53454 high risk patients, show a 20% reduction of mortality when the screening program was carried out with the helical CT, rather than with a conventional chest X-ray. LDCT settings are currently recommended by the screening trial protocols. However, it is not trivial in this case to identify small pulmonary nodules,due to the noisier appearance of the images in low-dose CT with respect to the standard-dose CT. Moreover, thin slices are generally used in screening programs, thus originating datasets of about 300 − 400 slices per study. De- pending on the screening trial protocol they joined, radiologists can be asked to identify even very small lung nodules, which is a very difficult and time- consuming task. Lung nodules are rather spherical objects, characterized by very low CT values and/or low contrast. Nodules may have CT values in the same range of those of blood vessels, airway walls, pleura and may be strongly connected to them. It has been demonstrated, that a large percent- age of nodules (20 − 35%) is actually missed in screening diagnoses. To support radiologists in the identification of early-stage pathological objects, about one decade ago, researchers started to develop CAD methods to be applied to CT examinations. Within this framework, two CAD sub-systems are proposed: CAD for internal nodules (CADI), devoted to the identification of small nodules embedded in the lung parenchyma, i.e. Internal Nodules (INs) and CADJP, devoted the identification of nodules originating on the pleura surface, i.e. Juxta-Pleural Nodules (JPNs) respectively. As the training and validation sets may drastically influence the performance of a CAD system, the presented approaches have been trained, developed and tested on different datasets of CT scans (Lung Image Database Consortium (LIDC), ITALUNG − CT) and finally blindly validated on the ANODE09 dataset. The two CAD sub-systems are implemented in the ITK framework, an open source C++ framework for segmentation and registration of medical im- ages, and the rendering of the obtained results are achieved using VTK, a freely available software system for 3D computer graphics, image processing and visualization. The Support Vector Machines (SVMs) are implemented in SVMLight. The two proposed approaches have been developed to detect solid nodules, since the number of Ground Glass Opacity (GGO) contained in the available datasets has been considered too low. This thesis is structured as follows: in the first chapter the basic concepts about CT and lung anatomy are explained. The second chapter deals with CAD systems and their evaluation methods. In the third chapter the datasets used for this work are described. In chapter 4 the lung segmentation algorithm is explained in details, and in chapter 5 and 6 the algorithms to detect internal and juxta-pleural candidates are discussed. In chapter 7 the reduction of false positives findings is explained. In chapter 8 results of the train and validation sessions are shown. Finally in the last chapter the conclusions are drawn

    A Computer-Aided Detection system for lung nodules in CT images

    Get PDF
    Lung cancer is the leading cause of cancer-related mortality in developed countries. To support radiologists in the identification of early-stage lung cancers, we propose a Computer-Aided Detection (CAD) system, composed by two different procedures: VBNACADI devoted to the identification of small nodules embedded in the lung parenchyma (internal nodules) and VBNACADJP devoted the identification of nodules originating on the pleura surface (juxta-pleural nodules). The CAD system has been developed and tested on a dataset of low-dose and thin-slice CT scans collected in the framework of the first Italian randomized and controlled screening trial (ITALUNG-CT). This work has been carried out in the framework of MAGIC-5 (Medical Application on a Grid Infrastructure Connection), an Italian collaboration funded by Istituto Nazionale di Fisica Nucleare (INFN) and Ministero dell’Universit`a e della Ricerca (MIUR), which aims at developing models and algorithms for a distributed analysis of biomedical images, by making use of the GRID services

    Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge

    Get PDF
    Automatic detection of pulmonary nodules in thoracic computed tomography (CT) scans has been an active area of research for the last two decades. However, there have only been few studies that provide a comparative performance evaluation of different systems on a common database. We have therefore set up the LUNA16 challenge, an objective evaluation framework for automatic nodule detection algorithms using the largest publicly available reference database of chest CT scans, the LIDC-IDRI data set. In LUNA16, participants develop their algorithm and upload their predictions on 888 CT scans in one of the two tracks: 1) the complete nodule detection track where a complete CAD system should be developed, or 2) the false positive reduction track where a provided set of nodule candidates should be classified. This paper describes the setup of LUNA16 and presents the results of the challenge so far. Moreover, the impact of combining individual systems on the detection performance was also investigated. It was observed that the leading solutions employed convolutional networks and used the provided set of nodule candidates. The combination of these solutions achieved an excellent sensitivity of over 95% at fewer than 1.0 false positives per scan. This highlights the potential of combining algorithms to improve the detection performance. Our observer study with four expert readers has shown that the best system detects nodules that were missed by expert readers who originally annotated the LIDC-IDRI data. We released this set of additional nodules for further development of CAD systems

    Sviluppo di algoritmi per l'analisi automatica di immagini tomografiche polmonari

    Get PDF
    Il lavoro oggetto di questa tesi consiste nello sviluppo di algoritmi per l’analisi automatica di immagini biomediche acquisite mediante Tomografia Assiale Computerizzata (TAC), con l’obiettivo di identificare le lesioni tumorali polmonari. In particolare sono stati sviluppati algoritmi paralleli efficienti in termini di tempo di esecuzione utilizzando le Graphical Processing Units (GPU ) attraverso la tecnologia CUDA (Compute Unified Device Architecture) di NVIDIA. Il tumore polmonare è attualmente la maggiore causa di morte fra le patologie neoplastiche e la TAC si è dimostrata essere la tecnica più efficace per la diagnosi precoce di questa patologia, il cui segno radiologico principale consiste nella formazione di noduli polmonari non calcifici. Recenti studi del National Lung Screening Trial (U.S.) hanno dimostrato che lo screening della popolazione asintomatica considerata a rischio effettuato con la TAC spirale multislice toracica è in grado di ridurre la mortalità del 20% rispetto a uno screening effettuato con la radiografia. Un esame TAC, specialmente se acquisito nella modalità a bassa dose e strato sottile come nel caso dello screening, è composto da molte (3-400) immagini bidimensionali molto rumorose che il radiologo deve analizzare attentamente alla ricerca di piccoli noduli. La grande mole di dati prodotta in una scansione TAC rende quindi la lettura delle immagini un compito lungo e gravoso per il radiologo. In letteratura è stato dimostrato che nella routine clinica molti noduli polmonari sono persi alla prima lettura. Con queste premesse nasce l’esigenza di sviluppare uno strumento per affiancare il radiologo nel suo lavoro, che prende il nome di Computer Aided Detection (CAD). In questo lavoro di tesi è descritto il sistema CAD per la ricerca automatica di noduli polmonari interni, sviluppato nell’ambito della collaborazione MAGIC-5 dell’INFN (Istituto Nazionale di Fisica Nucleare). Il CAD realizzato è costituito da tre moduli. Un primo modulo si occupa di isolare il volume polmonare dal resto dell’immagine utilizzando un processo basato su thresholding, region-growing e operatori morfologici. Successivamente un secondo modulo si occupa di identificare i candidati noduli. Questi sono modellizzati come oggetti sferici di profilo gaussiano. La matrice tridimensionale dei dati viene analizzata con un algoritmo multiscala basato sugli autovalori della matrice hessiana associata all’immagine, ideato per discriminare fra oggetti ad alta sfericità ed oggetti planari o cilindrici. Un ultimo modulo si occupa della riduzione del numero dei falsi positivi presenti fra i candidati noduli. Questo avviene caratterizzando ogni voxel (volume pixel) di ciascuna regione di interesse con dei vettori di features che vengono analizzati da un classificatore di tipo Support Vector Machine. In un contesto di screening della popolazione in cui vengono prodotte molte immagini, la velocità di esecuzione del CAD può diventare un fattore limitante. Inoltre il CAD ha dimostrato di essere utile e funzionante anche applicato ad analisi cliniche, dove è importante la velocità di risposta del sistema. Il lavoro descritto in questa tesi è consistito nell’utilizzo della tecnologia CUDA di NVIDIA per la programmazione su GPU con l’obiettivo di ridurre i tempi di esecuzione del CAD. Negli ultimi anni l’incremento delle prestazioni dei software dovuta al semplice aumento della capacità di elaborazione dei microprocessori ha rallentato la sua crescita. Le applicazioni che invece continuano ad avere incrementi di prestazioni sono i programmi paralleli, con i quali più processi cooperano a completare il lavoro in modo più rapido. L’industria dei semiconduttori si è quindi orientata verso lo sviluppo di due principali paradigmi di processori: le multi-core CPU (Central Processing Unit) e le many-core GPU (Graphical Processing Unit). Queste ultime sono progettate per eseguire computazioni intense e altamente parallele, e sono particolarmente adatte a risolvere problemi che possono essere espressi come calcoli paralleli sui dati: il dato viene partizionato e lo stesso programma viene eseguito in parallelo su tutti gli elementi. In particolare, in questo lavoro di tesi, è stata studiata e realizzata una implementazione parallela dell’algoritmo di identificazione dei candidati noduli. Rispetto alle versioni precedentemente ottimizzate è stato possibile ottenere un guadagno temporale di un fattore 15, mantenendo invariate le performance di identificazione dei noduli. Questi risultati dimostrano come l’utilizzo delle GPU apporti un contributo significativo nel campo dell’analisi delle immagini mediche e che ulteriori sforzi possono quindi essere fatti per completare l’implementazione di tutto il CAD su GPU

    A voxel-based neural approach (VBNA) to identify lung nodules in the ANODE09 study

    No full text
    corecore