267 research outputs found

    Provably secure and efficient audio compression based on compressive sensing

    Get PDF
    The advancement of systems with the capacity to compress audio signals and simultaneously secure is a highly attractive research subject. This is because of the need to enhance storage usage and speed up the transmission of data, as well as securing the transmission of sensitive signals over limited and insecure communication channels. Thus, many researchers have studied and produced different systems, either to compress or encrypt audio data using different algorithms and methods, all of which suffer from certain issues including high time consumption or complex calculations. This paper proposes a compressing sensing-based system that compresses audio signals and simultaneously provides an encryption system. The audio signal is segmented into small matrices of samples and then multiplied by a non-square sensing matrix generated by a Gaussian random generator. The reconstruction process is carried out by solving a linear system using the pseudoinverse of Moore-Penrose. The statistical analysis results obtaining from implementing different types and sizes of audio signals prove that the proposed system succeeds in compressing the audio signals with a ratio reaching 28% of real size and reconstructing the signal with a correlation metric between 0.98 and 0.99. It also scores very good results in the normalized mean square error (MSE), peak signal-to-noise ratio metrics (PSNR), and the structural similarity index (SSIM), as well as giving the signal a high level of security

    Roadmap on optical security

    Get PDF
    Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Pérez-Cabré], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections: Sheridan reviews phase retrieval algorithms to perform different attacks, whereas Situ discusses nonlinear optical encryption techniques and the development of a rigorous optical information security theory. The fourth category with two contributions reports how encryption could be implemented at the nano- or micro-scale. Naruse discusses the use of nanostructures in security applications and Carnicer proposes encoding information in a tightly focused beam. In the fifth category, encryption based on ghost imaging using single-pixel detectors is also considered. In particular, the authors [Chen, Tajahuerce] emphasize the need for more specialized hardware and image processing algorithms. Finally, in the sixth category, Mosk and Javidi analyze in their corresponding papers how quantum imaging can benefit optical encryption systems. Sources that use few photons make encryption systems much more difficult to attack, providing a secure method for authentication.Centro de Investigaciones ÓpticasConsejo Nacional de Investigaciones Científicas y Técnica

    On Lightweight Privacy-Preserving Collaborative Learning for IoT Objects

    Full text link
    The Internet of Things (IoT) will be a main data generation infrastructure for achieving better system intelligence. This paper considers the design and implementation of a practical privacy-preserving collaborative learning scheme, in which a curious learning coordinator trains a better machine learning model based on the data samples contributed by a number of IoT objects, while the confidentiality of the raw forms of the training data is protected against the coordinator. Existing distributed machine learning and data encryption approaches incur significant computation and communication overhead, rendering them ill-suited for resource-constrained IoT objects. We study an approach that applies independent Gaussian random projection at each IoT object to obfuscate data and trains a deep neural network at the coordinator based on the projected data from the IoT objects. This approach introduces light computation overhead to the IoT objects and moves most workload to the coordinator that can have sufficient computing resources. Although the independent projections performed by the IoT objects address the potential collusion between the curious coordinator and some compromised IoT objects, they significantly increase the complexity of the projected data. In this paper, we leverage the superior learning capability of deep learning in capturing sophisticated patterns to maintain good learning performance. Extensive comparative evaluation shows that this approach outperforms other lightweight approaches that apply additive noisification for differential privacy and/or support vector machines for learning in the applications with light data pattern complexities.Comment: 12 pages,IOTDI 201

    DNA and Plaintext Dependent Chaotic Visual Selective Image Encryption

    Get PDF
    Visual selective image encryption can both improve the efficiency of the image encryption algorithm and reduce the frequency and severity of attacks against data. In this article, a new form of encryption is proposed based on keys derived from Deoxyribonucleic Acid (DNA) and plaintext image. The proposed scheme results in chaotic visual selective encryption of image data. In order to make and ensure that this new scheme is robust and secure against various kinds of attacks, the initial conditions of the chaotic maps utilized are generated from a random DNA sequence as well as plaintext image via an SHA-512 hash function. To increase the key space, three different single dimension chaotic maps are used. In the proposed scheme, these maps introduce diffusion in a plain image by selecting a block that have greater correlation and then it is bitwise XORed with the random matrix. The other two chaotic maps break the correlation among adjacent pixels via confusion (row and column shuffling). Once the ciphertext image has been divided into the respective units of Most Significant Bits (MSBs) and Least Significant Bit (LSBs), the host image is passed through lifting wavelet transformation, which replaces the low-frequency blocks of the host image (i.e., HL and HH) with the aforementioned MSBs and LSBs of ciphertext. This produces a final visual selective encrypted image and all security measures proves the robustness of the proposed scheme
    corecore