234 research outputs found

    30 Years of Software Refactoring Research: A Systematic Literature Review

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155872/4/30YRefactoring.pd

    30 Years of Software Refactoring Research:A Systematic Literature Review

    Full text link
    Due to the growing complexity of software systems, there has been a dramatic increase and industry demand for tools and techniques on software refactoring in the last ten years, defined traditionally as a set of program transformations intended to improve the system design while preserving the behavior. Refactoring studies are expanded beyond code-level restructuring to be applied at different levels (architecture, model, requirements, etc.), adopted in many domains beyond the object-oriented paradigm (cloud computing, mobile, web, etc.), used in industrial settings and considered objectives beyond improving the design to include other non-functional requirements (e.g., improve performance, security, etc.). Thus, challenges to be addressed by refactoring work are, nowadays, beyond code transformation to include, but not limited to, scheduling the opportune time to carry refactoring, recommendations of specific refactoring activities, detection of refactoring opportunities, and testing the correctness of applied refactorings. Therefore, the refactoring research efforts are fragmented over several research communities, various domains, and objectives. To structure the field and existing research results, this paper provides a systematic literature review and analyzes the results of 3183 research papers on refactoring covering the last three decades to offer the most scalable and comprehensive literature review of existing refactoring research studies. Based on this survey, we created a taxonomy to classify the existing research, identified research trends, and highlighted gaps in the literature and avenues for further research.Comment: 23 page

    Intelligent Web Services Architecture Evolution Via An Automated Learning-Based Refactoring Framework

    Full text link
    Architecture degradation can have fundamental impact on software quality and productivity, resulting in inability to support new features, increasing technical debt and leading to significant losses. While code-level refactoring is widely-studied and well supported by tools, architecture-level refactorings, such as repackaging to group related features into one component, or retrofitting files into patterns, remain to be expensive and risky. Serval domains, such as Web services, heavily depend on complex architectures to design and implement interface-level operations, provided by several companies such as FedEx, eBay, Google, Yahoo and PayPal, to the end-users. The objectives of this work are: (1) to advance our ability to support complex architecture refactoring by explicitly defining Web service anti-patterns at various levels of abstraction, (2) to enable complex refactorings by learning from user feedback and creating reusable/personalized refactoring strategies to augment intelligent designers’ interaction that will guide low-level refactoring automation with high-level abstractions, and (3) to enable intelligent architecture evolution by detecting, quantifying, prioritizing, fixing and predicting design technical debts. We proposed various approaches and tools based on intelligent computational search techniques for (a) predicting and detecting multi-level Web services antipatterns, (b) creating an interactive refactoring framework that integrates refactoring path recommendation, design-level human abstraction, and code-level refactoring automation with user feedback using interactive mutli-objective search, and (c) automatically learning reusable and personalized refactoring strategies for Web services by abstracting recurring refactoring patterns from Web service releases. Based on empirical validations performed on both large open source and industrial services from multiple providers (eBay, Amazon, FedEx and Yahoo), we found that the proposed approaches advance our understanding of the correlation and mutual impact between service antipatterns at different levels, revealing when, where and how architecture-level anti-patterns the quality of services. The interactive refactoring framework enables, based on several controlled experiments, human-based, domain-specific abstraction and high-level design to guide automated code-level atomic refactoring steps for services decompositions. The reusable refactoring strategy packages recurring refactoring activities into automatable units, improving refactoring path recommendation and further reducing time-consuming and error-prone human intervention.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/142810/1/Wang Final Dissertation.pdfDescription of Wang Final Dissertation.pdf : Dissertatio

    Explainable, Security-Aware and Dependency-Aware Framework for Intelligent Software Refactoring

    Full text link
    As software systems continue to grow in size and complexity, their maintenance continues to become more challenging and costly. Even for the most technologically sophisticated and competent organizations, building and maintaining high-performing software applications with high-quality-code is an extremely challenging and expensive endeavor. Software Refactoring is widely recognized as the key component for maintaining high-quality software by restructuring existing code and reducing technical debt. However, refactoring is difficult to achieve and often neglected due to several limitations in the existing refactoring techniques that reduce their effectiveness. These limitation include, but not limited to, detecting refactoring opportunities, recommending specific refactoring activities, and explaining the recommended changes. Existing techniques are mainly focused on the use of quality metrics such as coupling, cohesion, and the Quality Metrics for Object Oriented Design (QMOOD). However, there are many other factors identified in this work to assist and facilitate different maintenance activities for developers: 1. To structure the refactoring field and existing research results, this dissertation provides the most scalable and comprehensive systematic literature review analyzing the results of 3183 research papers on refactoring covering the last three decades. Based on this survey, we created a taxonomy to classify the existing research, identified research trends and highlighted gaps in the literature for further research. 2. To draw attention to what should be the current refactoring research focus from the developers’ perspective, we carried out the first large scale refactoring study on the most popular online Q&A forum for developers, Stack Overflow. We collected and analyzed posts to identify what developers ask about refactoring, the challenges that practitioners face when refactoring software systems, and what should be the current refactoring research focus from the developers’ perspective. 3. To improve the detection of refactoring opportunities in terms of quality and security in the context of mobile apps, we designed a framework that recommends the files to be refactored based on user reviews. We also considered the detection of refactoring opportunities in the context of web services. We proposed a machine learning-based approach that helps service providers and subscribers predict the quality of service with the least costs. Furthermore, to help developers make an accurate assessment of the quality of their software systems and decide if the code should be refactored, we propose a clustering-based approach to automatically identify the preferred benchmark to use for the quality assessment of a project. 4. Regarding the refactoring generation process, we proposed different techniques to enhance the change operators and seeding mechanism by using the history of applied refactorings and incorporating refactoring dependencies in order to improve the quality of the refactoring solutions. We also introduced the security aspect when generating refactoring recommendations, by investigating the possible impact of improving different quality attributes on a set of security metrics and finding the best trade-off between them. In another approach, we recommend refactorings to prioritize fixing quality issues in security-critical files, improve quality attributes and remove code smells. All the above contributions were validated at the large scale on thousands of open source and industry projects in collaboration with industry partners and the open source community. The contributions of this dissertation are integrated in a cloud-based refactoring framework which is currently used by practitioners.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttp://deepblue.lib.umich.edu/bitstream/2027.42/171082/1/Chaima Abid Final Dissertation.pdfDescription of Chaima Abid Final Dissertation.pdf : Dissertatio

    A survey on software coupling relations and tools

    Full text link
    Context Coupling relations reflect the dependencies between software entities and can be used to assess the quality of a program. For this reason, a vast amount of them has been developed, together with tools to compute their related metrics. However, this makes the coupling measures suitable for a given application challenging to find. Goals The first objective of this work is to provide a classification of the different kinds of coupling relations, together with the metrics to measure them. The second consists in presenting an overview of the tools proposed until now by the software engineering academic community to extract these metrics. Method This work constitutes a systematic literature review in software engineering. To retrieve the referenced publications, publicly available scientific research databases were used. These sources were queried using keywords inherent to software coupling. We included publications from the period 2002 to 2017 and highly cited earlier publications. A snowballing technique was used to retrieve further related material. Results Four groups of coupling relations were found: structural, dynamic, semantic and logical. A fifth set of coupling relations includes approaches too recent to be considered an independent group and measures developed for specific environments. The investigation also retrieved tools that extract the metrics belonging to each coupling group. Conclusion This study shows the directions followed by the research on software coupling: e.g., developing metrics for specific environments. Concerning the metric tools, three trends have emerged in recent years: use of visualization techniques, extensibility and scalability. Finally, some coupling metrics applications were presented (e.g., code smell detection), indicating possible future research directions. Public preprint [https://doi.org/10.5281/zenodo.2002001]

    Web service composition: A survey of techniques and tools

    Get PDF
    Web services are a consolidated reality of the modern Web with tremendous, increasing impact on everyday computing tasks. They turned the Web into the largest, most accepted, and most vivid distributed computing platform ever. Yet, the use and integration of Web services into composite services or applications, which is a highly sensible and conceptually non-trivial task, is still not unleashing its full magnitude of power. A consolidated analysis framework that advances the fundamental understanding of Web service composition building blocks in terms of concepts, models, languages, productivity support techniques, and tools is required. This framework is necessary to enable effective exploration, understanding, assessing, comparing, and selecting service composition models, languages, techniques, platforms, and tools. This article establishes such a framework and reviews the state of the art in service composition from an unprecedented, holistic perspective

    Best Practices for Implementing Agile Methods: A Guide for Department of Defense Software Developers

    Get PDF
    Traditional plan-driven software development has been widely used in the government because it\u27s considered to be less risky, more consistent, and structured. But there has been a shift from this approach to Agile methods which are more flexible, resulting in fast releases by working in an incremental fashion to adapt to the reality of the changing or unclear requirements. This report describes the Agile software development philosophy, methods, and best practices in launching software design projects using the Agile approach. It is targeted to Defense Department software developers because they face broad challenges in creating enterprise-wide information systems, where Agile methods could be used most effectively. Though not a panacea, agile methods offer a solution to an important class of problems faced by organizations today. Technology and E-Government

    Early Quality of Service Prediction via Interface-level Metrics, Code-level Metrics, and Antipatterns

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/155332/1/IST___Webservices (12).pd
    • …
    corecore