28,548 research outputs found

    Exploiting P2P in the Creation of Game Worlds

    Get PDF
    Peer-to-peer networks are a promising platform for supporting entirely decentralized, distributed multi-user gaming; however, multi-player games typically require highly predictable performance from the underlying network. This is at odds with the inherently unreliable nature of peer-to-peer environments. Existing approaches to providing peer-to-peer support for multi-player gaming focus on compensating for the unpredictability of the underlying network. We propose that rather than trying to compensate for these factors, they can be exploited together with information about the peer-to-peer network in order to address the problem of maintaining a novel gaming experience in the absence of a central authority. In order to explore our proposition, we model the measurable properties of P2P networks within a distributed multi-player game – NetWorld. We do this in such a way that the heterogeneous and unpredictable nature of the peer-to-peer environment becomes a positive part of the player’s experience

    A Framework for XML-based Integration of Data, Visualization and Analysis in a Biomedical Domain

    Get PDF
    Biomedical data are becoming increasingly complex and heterogeneous in nature. The data are stored in distributed information systems, using a variety of data models, and are processed by increasingly more complex tools that analyze and visualize them. We present in this paper our framework for integrating biomedical research data and tools into a unique Web front end. Our framework is applied to the University of Washington’s Human Brain Project. SpeciïŹcally, we present solutions to four integration tasks: deïŹnition of complex mappings from relational sources to XML, distributed XQuery processing, generation of heterogeneous output formats, and the integration of heterogeneous data visualization and analysis tools

    Enabling collaboration in virtual reality navigators

    Get PDF
    In this paper we characterize a feature superset for Collaborative Virtual Reality Environments (CVRE), and derive a component framework to transform stand-alone VR navigators into full-fledged multithreaded collaborative environments. The contributions of our approach rely on a cost-effective and extensible technique for loading software components into separate POSIX threads for rendering, user interaction and network communications, and adding a top layer for managing session collaboration. The framework recasts a VR navigator under a distributed peer-to-peer topology for scene and object sharing, using callback hooks for broadcasting remote events and multicamera perspective sharing with avatar interaction. We validate the framework by applying it to our own ALICE VR Navigator. Experimental results show that our approach has good performance in the collaborative inspection of complex models.Postprint (published version

    MPICH-G2: A Grid-Enabled Implementation of the Message Passing Interface

    Full text link
    Application development for distributed computing "Grids" can benefit from tools that variously hide or enable application-level management of critical aspects of the heterogeneous environment. As part of an investigation of these issues, we have developed MPICH-G2, a Grid-enabled implementation of the Message Passing Interface (MPI) that allows a user to run MPI programs across multiple computers, at the same or different sites, using the same commands that would be used on a parallel computer. This library extends the Argonne MPICH implementation of MPI to use services provided by the Globus Toolkit for authentication, authorization, resource allocation, executable staging, and I/O, as well as for process creation, monitoring, and control. Various performance-critical operations, including startup and collective operations, are configured to exploit network topology information. The library also exploits MPI constructs for performance management; for example, the MPI communicator construct is used for application-level discovery of, and adaptation to, both network topology and network quality-of-service mechanisms. We describe the MPICH-G2 design and implementation, present performance results, and review application experiences, including record-setting distributed simulations.Comment: 20 pages, 8 figure

    IMP Science Gateway: from the Portal to the Hub of Virtual Experimental Labs in Materials Science

    Full text link
    "Science gateway" (SG) ideology means a user-friendly intuitive interface between scientists (or scientific communities) and different software components + various distributed computing infrastructures (DCIs) (like grids, clouds, clusters), where researchers can focus on their scientific goals and less on peculiarities of software/DCI. "IMP Science Gateway Portal" (http://scigate.imp.kiev.ua) for complex workflow management and integration of distributed computing resources (like clusters, service grids, desktop grids, clouds) is presented. It is created on the basis of WS-PGRADE and gUSE technologies, where WS-PGRADE is designed for science workflow operation and gUSE - for smooth integration of available resources for parallel and distributed computing in various heterogeneous distributed computing infrastructures (DCI). The typical scientific workflows with possible scenarios of its preparation and usage are presented. Several typical use cases for these science applications (scientific workflows) are considered for molecular dynamics (MD) simulations of complex behavior of various nanostructures (nanoindentation of graphene layers, defect system relaxation in metal nanocrystals, thermal stability of boron nitride nanotubes, etc.). The user experience is analyzed in the context of its practical applications for MD simulations in materials science, physics and nanotechnologies with available heterogeneous DCIs. In conclusion, the "science gateway" approach - workflow manager (like WS-PGRADE) + DCI resources manager (like gUSE)- gives opportunity to use the SG portal (like "IMP Science Gateway Portal") in a very promising way, namely, as a hub of various virtual experimental labs (different software components + various requirements to resources) in the context of its practical MD applications in materials science, physics, chemistry, biology, and nanotechnologies.Comment: 6 pages, 5 figures, 3 tables; 6th International Workshop on Science Gateways, IWSG-2014 (Dublin, Ireland, 3-5 June, 2014). arXiv admin note: substantial text overlap with arXiv:1404.545

    Slisp: A Flexible Software Toolkit for Hybrid, Embedded and Distributed Applications

    Get PDF
    We describe Slisp (pronounced ‘Ess-Lisp’), a hybrid Lisp–C programming toolkit for the development of scriptable and distributed applications. Computationally expensive operations implemented as separate C-coded modules are selectively compiled into a small Xlisp interpreter, then called as Lisp functions in a Lisp-coded program. The resulting hybrid program may run in several modes: as a stand-alone executable, embedded in a different C program, as a networked server accessed from another Slisp client, or as a networked server accessed from a C-coded client. Five years of experience with Slisp, as well experience with other scripting languages such as Tcl and Perl, are summarized. These experiences suggest that Slisp will be most useful for mid-sized applications in which the kinds of scripting and embeddability features provided by Tcl and Perl can be extended in an efïŹcient manner to larger applications, while maintaining a well-deïŹned standard (Common Lisp) for these extensions. In addition, the generality of Lisp makes Lisp a good candidate for an application-level communication language in distributed environments
    • 

    corecore