14,842 research outputs found

    A simulation study of the flight dynamics of elastic aircraft. Volume 1: Experiment, results and analysis

    Get PDF
    The simulation experiment described addresses the effects of structural flexibility on the dynamic characteristics of a generic family of aircraft. The simulation was performed using the NASA Langley VMS simulation facility. The vehicle models were obtained as part of this research. The simulation results include complete response data and subjective pilot ratings and comments and so allow a variety of analyses. The subjective ratings and analysis of the time histories indicate that increased flexibility can lead to increased tracking errors, degraded handling qualities, and changes in the frequency content of the pilot inputs. These results, furthermore, are significantly affected by the visual cues available to the pilot

    Design and Testing of a Structural Monitoring System in an Almería-Type Tensioned Structure Greenhouse

    Get PDF
    Greenhouse cultivation has gained a special importance in recent years and become the basis of the economy in south-eastern Spain. The structures used are light and, due to weather events, often collapse completely or partially, which has generated interest in the study of these unique buildings. This study presents a load and displacement monitoring system that was designed, and full scale tested, in an Almería-type greenhouse with a tensioned wire structure. The loads and displacements measured under real load conditions were recorded for multiple time periods. The traction force on the roof cables decreased up to 22% for a temperature increase of 30 °C, and the compression force decreased up to 16.1% on the columns or pillars for a temperature and wind speed increase of 25.8 °C and 1.9 m/s respectively. The results show that the structure is susceptible to daily temperature changes and, to a lesser extent, wind throughout the test. The monitoring system, which uses load cells to measure loads and machine vision techniques to measure displacements, is appropriate for use in different types of greenhouses

    Investigation of Computer Vision Concepts and Methods for Structural Health Monitoring and Identification Applications

    Get PDF
    This study presents a comprehensive investigation of methods and technologies for developing a computer vision-based framework for Structural Health Monitoring (SHM) and Structural Identification (St-Id) for civil infrastructure systems, with particular emphasis on various types of bridges. SHM is implemented on various structures over the last two decades, yet, there are some issues such as considerable cost, field implementation time and excessive labor needs for the instrumentation of sensors, cable wiring work and possible interruptions during implementation. These issues make it only viable when major investments for SHM are warranted for decision making. For other cases, there needs to be a practical and effective solution, which computer-vision based framework can be a viable alternative. Computer vision based SHM has been explored over the last decade. Unlike most of the vision-based structural identification studies and practices, which focus either on structural input (vehicle location) estimation or on structural output (structural displacement and strain responses) estimation, the proposed framework combines the vision-based structural input and the structural output from non-contact sensors to overcome the limitations given above. First, this study develops a series of computer vision-based displacement measurement methods for structural response (structural output) monitoring which can be applied to different infrastructures such as grandstands, stadiums, towers, footbridges, small/medium span concrete bridges, railway bridges, and long span bridges, and under different loading cases such as human crowd, pedestrians, wind, vehicle, etc. Structural behavior, modal properties, load carrying capacities, structural serviceability and performance are investigated using vision-based methods and validated by comparing with conventional SHM approaches. In this study, some of the most famous landmark structures such as long span bridges are utilized as case studies. This study also investigated the serviceability status of structures by using computer vision-based methods. Subsequently, issues and considerations for computer vision-based measurement in field application are discussed and recommendations are provided for better results. This study also proposes a robust vision-based method for displacement measurement using spatio-temporal context learning and Taylor approximation to overcome the difficulties of vision-based monitoring under adverse environmental factors such as fog and illumination change. In addition, it is shown that the external load distribution on structures (structural input) can be estimated by using visual tracking, and afterward load rating of a bridge can be determined by using the load distribution factors extracted from computer vision-based methods. By combining the structural input and output results, the unit influence line (UIL) of structures are extracted during daily traffic just using cameras from which the external loads can be estimated by using just cameras and extracted UIL. Finally, the condition assessment at global structural level can be achieved using the structural input and output, both obtained from computer vision approaches, would give a normalized response irrespective of the type and/or load configurations of the vehicles or human loads

    A Vision-Based Sensor for Noncontact Structural Displacement Measurement

    Get PDF
    Conventional displacement sensors have limitations in practical applications. This paper develops a vision sensor system for remote measurement of structural displacements. An advanced template matching algorithm, referred to as the upsampled cross correlation, is adopted and further developed into a software package for real-time displacement extraction from video images. By simply adjusting the upsampling factor, better subpixel resolution can be easily achieved to improve the measurement accuracy. The performance of the vision sensor is first evaluated through a laboratory shaking table test of a frame structure, in which the displacements at all the floors are measured by using one camera to track either high-contrast artificial targets or low-contrast natural targets on the structural surface such as bolts and nuts. Satisfactory agreements are observed between the displacements measured by the single camera and those measured by high-performance laser displacement sensors. Then field tests are carried out on a railway bridge and a pedestrian bridge, through which the accuracy of the vision sensor in both time and frequency domains is further confirmed in realistic field environments. Significant advantages of the noncontact vision sensor include its low cost, ease of operation, and flexibility to extract structural displacement at any point from a single measurement

    Vision-based vibration monitoring of structures and infrastructures: overview of recent applications

    Get PDF
    Contactless structural monitoring has in recent years seen a growing number of applications in civil engineering. Indeed, the elimination of physical installations of sensors is very attractive, especially for structures that might not be easily or safely accessible, yet requiring the experimental evaluation of their conditions, for example following extreme events such as strong earthquakes, explosions, and floods. Among contactless technologies, vision-based monitoring is possibly the solution that has attracted most of the interest of civil engineers, given that the advantages of contactless monitoring can be potentially obtained thorough simple and low-cost consumer-grade instrumentations. The objective of this review article is to provide an introductory discussion of the latest applications of vision-based vibration monitoring of structures and infrastructures through an overview of the results achieved in full-scale field tests, as documented in the published technical literature. In this way, engineers new to vision-based monitoring and stakeholders interested in the possibilities of contactless monitoring in civil engineering could have an outline of up-to-date achievements to support a first evaluation of the feasibility and convenience for future monitoring tasks

    Measurements of static and dynamic displacement from visual monitoring of the Humber Bridge

    Get PDF
    Author's manuscript version. The final published version is available from the publisher via doi:10.1016/0141-0296(93)90054-8. Copyright © 1993 Published by Elsevier Ltd.A visual tracking system has been employed in the measurement of deck displacements at the centre of the 1410 m span of the Humber Bridge in the UK. The transputer-based system was developed for applications such as the monitoring or testing of large physical structures, where the actual displacements may not easily be otherwise determined. The system employs parallel processing techniques to track predictively the motion of multiple, independent objects at video frame rate. Results obtained using the system in a monitoring programme of the bridge are presented and discussed. © 1993

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 125

    Get PDF
    This special bibliography lists 323 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1974
    • …
    corecore