10,438 research outputs found

    Cloud cover typing from environmental satellite imagery. Discriminating cloud structure with Fast Fourier Transforms (FFT)

    Get PDF
    The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs

    Segue: Overviewing Evolution Patterns of Egocentric Networks by Interactive Construction of Spatial Layouts

    Full text link
    Getting the overall picture of how a large number of ego-networks evolve is a common yet challenging task. Existing techniques often require analysts to inspect the evolution patterns of ego-networks one after another. In this study, we explore an approach that allows analysts to interactively create spatial layouts in which each dot is a dynamic ego-network. These spatial layouts provide overviews of the evolution patterns of ego-networks, thereby revealing different global patterns such as trends, clusters and outliers in evolution patterns. To let analysts interactively construct interpretable spatial layouts, we propose a data transformation pipeline, with which analysts can adjust the spatial layouts and convert dynamic egonetworks into event sequences to aid interpretations of the spatial positions. Based on this transformation pipeline, we developed Segue, a visual analysis system that supports thorough exploration of the evolution patterns of ego-networks. Through two usage scenarios, we demonstrate how analysts can gain insights into the overall evolution patterns of a large collection of ego-networks by interactively creating different spatial layouts.Comment: Published at IEEE Conference on Visual Analytics Science and Technology (IEEE VAST 2018

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201

    Online real-time crowd behavior detection in video sequences

    Get PDF
    Automatically detecting events in crowded scenes is a challenging task in Computer Vision. A number of offline approaches have been proposed for solving the problem of crowd behavior detection, however the offline assumption limits their application in real-world video surveillance systems. In this paper, we propose an online and real-time method for detecting events in crowded video sequences. The proposed approach is based on the combination of visual feature extraction and image segmentation and it works without the need of a training phase. A quantitative experimental evaluation has been carried out on multiple publicly available video sequences, containing data from various crowd scenarios and different types of events, to demonstrate the effectiveness of the approach

    Dynamic Composite Data Physicalization Using Wheeled Micro-Robots

    Get PDF
    This paper introduces dynamic composite physicalizations, a new class of physical visualizations that use collections of self-propelled objects to represent data. Dynamic composite physicalizations can be used both to give physical form to well-known interactive visualization techniques, and to explore new visualizations and interaction paradigms. We first propose a design space characterizing composite physicalizations based on previous work in the fields of Information Visualization and Human Computer Interaction. We illustrate dynamic composite physicalizations in two scenarios demonstrating potential benefits for collaboration and decision making, as well as new opportunities for physical interaction. We then describe our implementation using wheeled micro-robots capable of locating themselves and sensing user input, before discussing limitations and opportunities for future work
    • …
    corecore