12 research outputs found

    A virus-evolutionary, multi-objective intelligent tool path optimisation methodology for sculptured surface CNC machining

    Get PDF
    Today’s production environment faces multiple challenges involving fast adaptation to modern technologies, flexibility in accommodating them to current industrial practices and cost reduction through automating repetitive tasks. At the same time the requirements for manufacturing functional, aesthetic and versatile products, turn these challenges to clear and present industrial problems that need to be solved by delivering at least semi-optimal results. Even though sculptured surfaces can meet such requirements when it comes to product design, a critical problem exists in terms of their machining operations owing to their arbitrary nature and complex geometrical features as opposed to prismatic surfaces. Current approaches for generating tool paths in computer-aided manufacturing (CAM) systems are still based on human intervention as well as trial-and-error experiments. These approaches neither can provide optimal tool paths nor can they establish a generic approach for an advantageous and profitable sculptured surface machining (SSM). Major goal of this PhD thesis is the development of an intelligent, automated and generic methodology for generating optimal 5-axis CNC tool paths to machine complex sculptured surfaces. The methodology considers the tool path parameters “cutting tool”, “stepover”, “lead angle”, “tilt angle” and “maximum discretisation step” as the independent variables for optimisation whilst the mean machining error, its mean distribution on the sculptured surface and the minimum number of tool positions are the crucial optimisation criteria formulating the generalized multi-objective sculptured surface CNC machining optimisation problem. The methodology is a two-fold programming framework comprising a virus-evolutionary genetic algorithm as the methodology’s intelligent part for performing the multi-objective optimisation and an automation function for driving the algorithm through its argument-passing elements directly related to CAM software, i.e., tool path computation utilities, objects for programmatically retrieving tool path parameters’ inputs, etc. These two modules (the intelligent algorithm and the automation function) interact and exchange information as needed towards the achievement of creating globally optimal tool paths for any sculptured surface. The methodology has been validated through simulation experiments and actual machining operations conducted to benchmark sculptured surfaces and corresponding results have been compared to those available from already existing tool path generation/optimisation approaches in the literature. The results have proven the methodology’s practical merits as well as its effectiveness for maintaining quality and productivity in sculptured surface 5-axis CNC machining

    Optimization of Manufacturing Production and Process

    Get PDF
    This chapter mainly introduces production processing optimization, especially for machining processing optimization on CNC. The sensor collects the original vibration data in time domain and converts them to the main feature vector using signal processing technologies, such as fast Fourier transform (FFT), short-time Fourier transform (STFT), and wavelet packet in the 5G AI edge computing. Subsequently, the main feature will be sent for cloud computing using genetic programming, Space Vector Machine (SVM), etc. to obtain optimization results. The optimization parameters in this work include machining spindle rotation velocity, cutting speed, and cutting depth, while, the result is the optimized main spindle rotation speed range of CNC, which met machining roughness requirements. Finally, the relationship between vibration velocity and machining quality is further studied to optimize the three operational parameters

    Special Issue of the Manufacturing Engineering Society (MES)

    Get PDF
    This book derives from the Special Issue of the Manufacturing Engineering Society (MES) that was launched as a Special Issue of the journal Materials. The 48 contributions, published in this book, explore the evolution of traditional manufacturing models toward the new requirements of the Manufacturing Industry 4.0 and present cutting-edge advances in the field of Manufacturing Engineering focusing on additive manufacturing and 3D printing, advances and innovations in manufacturing processes, sustainable and green manufacturing, manufacturing systems (machines, equipment and tooling), metrology and quality in manufacturing, Industry 4.0, product lifecycle management (PLM) technologies, and production planning and risks

    Object Detection and Tracking in Cooperative Multi-Robot Transportation

    Get PDF
    Contemporary manufacturing systems imply the utilization of autonomous robotic systems, mainly for the execution of manipulation and transportation tasks. With a goal to reduce transportation and manipulation time, improve efficiency, and achieve flexibility of intelligent manufacturing systems, two or more intelligent mobile robots can be exploited. Such multi-robot systems require coordination and some level of communication between heterogeneous or homogeneous robotic systems. In this paper, we propose the utilization of two heterogeneous robotic systems, original intelligent mobile robots RAICO (Robot with Artificial Intelligence based COgnition) and DOMINO (Deep learning-based Omnidirectional Mobile robot with Intelligent cOntrol), for transportation tasks within a laboratory model of a manufacturing environment. In order to reach an adequate cooperation level and avoid collision while moving along predefined paths, our own developed intelligent mobile robots RAICO and DOMINO will communicate their current poses, and object detection and tracking system is developed. A stereo vision system equipped with two parallelly placed industrial-grade cameras is used for image acquisition, while convolutional neural networks are utilized for object detection, classification, and tracking. The proposed object detection and tracking system enables real-time tracking of another mobile robot within the same manufacturing environment. Furthermore, continuous information about mobile robot poses and the size of the bounding box generated by the convolutional neural network in the process of detection of another mobile robot is used for estimation of object movement and collision avoidance. Mobile robot localization through time is performed based on kinematic models of two intelligent mobile robots, and conducted experiments within a laboratory model of manufacturing environment confirm the applicability of the proposed framework for object detection and collision avoidance

    Iowa State University, Courses and Programs Catalog 2014–2015

    Get PDF
    The Iowa State University Catalog is a one-year publication which lists all academic policies, and procedures. The catalog also includes the following: information for fees; curriculum requirements; first-year courses of study for over 100 undergraduate majors; course descriptions for nearly 5000 undergraduate and graduate courses; and a listing of faculty members at Iowa State University.https://lib.dr.iastate.edu/catalog/1025/thumbnail.jp
    corecore