8,392 research outputs found

    Leveraging Semantic Web Technologies for Managing Resources in a Multi-Domain Infrastructure-as-a-Service Environment

    Full text link
    This paper reports on experience with using semantically-enabled network resource models to construct an operational multi-domain networked infrastructure-as-a-service (NIaaS) testbed called ExoGENI, recently funded through NSF's GENI project. A defining property of NIaaS is the deep integration of network provisioning functions alongside the more common storage and computation provisioning functions. Resource provider topologies and user requests can be described using network resource models with common base classes for fundamental cyber-resources (links, nodes, interfaces) specialized via virtualization and adaptations between networking layers to specific technologies. This problem space gives rise to a number of application areas where semantic web technologies become highly useful - common information models and resource class hierarchies simplify resource descriptions from multiple providers, pathfinding and topology embedding algorithms rely on query abstractions as building blocks. The paper describes how the semantic resource description models enable ExoGENI to autonomously instantiate on-demand virtual topologies of virtual machines provisioned from cloud providers and are linked by on-demand virtual connections acquired from multiple autonomous network providers to serve a variety of applications ranging from distributed system experiments to high-performance computing

    Deliverable DJRA1.2. Solutions and protocols proposal for the network control, management and monitoring in a virtualized network context

    Get PDF
    This deliverable presents several research proposals for the FEDERICA network, in different subjects, such as monitoring, routing, signalling, resource discovery, and isolation. For each topic one or more possible solutions are elaborated, explaining the background, functioning and the implications of the proposed solutions.This deliverable goes further on the research aspects within FEDERICA. First of all the architecture of the control plane for the FEDERICA infrastructure will be defined. Several possibilities could be implemented, using the basic FEDERICA infrastructure as a starting point. The focus on this document is the intra-domain aspects of the control plane and their properties. Also some inter-domain aspects are addressed. The main objective of this deliverable is to lay great stress on creating and implementing the prototype/tool for the FEDERICA slice-oriented control system using the appropriate framework. This deliverable goes deeply into the definition of the containers between entities and their syntax, preparing this tool for the future implementation of any kind of algorithm related to the control plane, for both to apply UPB policies or to configure it by hand. We opt for an open solution despite the real time limitations that we could have (for instance, opening web services connexions or applying fast recovering mechanisms). The application being developed is the central element in the control plane, and additional features must be added to this application. This control plane, from the functionality point of view, is composed by several procedures that provide a reliable application and that include some mechanisms or algorithms to be able to discover and assign resources to the user. To achieve this, several topics must be researched in order to propose new protocols for the virtual infrastructure. The topics and necessary features covered in this document include resource discovery, resource allocation, signalling, routing, isolation and monitoring. All these topics must be researched in order to find a good solution for the FEDERICA network. Some of these algorithms have started to be analyzed and will be expanded in the next deliverable. Current standardization and existing solutions have been investigated in order to find a good solution for FEDERICA. Resource discovery is an important issue within the FEDERICA network, as manual resource discovery is no option, due to scalability requirement. Furthermore, no standardization exists, so knowledge must be obtained from related work. Ideally, the proposed solutions for these topics should not only be adequate specifically for this infrastructure, but could also be applied to other virtualized networks.Postprint (published version

    Optimal Orchestration of Virtual Network Functions

    Full text link
    -The emergence of Network Functions Virtualization (NFV) is bringing a set of novel algorithmic challenges in the operation of communication networks. NFV introduces volatility in the management of network functions, which can be dynamically orchestrated, i.e., placed, resized, etc. Virtual Network Functions (VNFs) can belong to VNF chains, where nodes in a chain can serve multiple demands coming from the network edges. In this paper, we formally define the VNF placement and routing (VNF-PR) problem, proposing a versatile linear programming formulation that is able to accommodate specific features and constraints of NFV infrastructures, and that is substantially different from existing virtual network embedding formulations in the state of the art. We also design a math-heuristic able to scale with multiple objectives and large instances. By extensive simulations, we draw conclusions on the trade-off achievable between classical traffic engineering (TE) and NFV infrastructure efficiency goals, evaluating both Internet access and Virtual Private Network (VPN) demands. We do also quantitatively compare the performance of our VNF-PR heuristic with the classical Virtual Network Embedding (VNE) approach proposed for NFV orchestration, showing the computational differences, and how our approach can provide a more stable and closer-to-optimum solution

    Experimental Evaluation of SDN-Controlled, Joint Consolidation of Policies and Virtual Machines

    Get PDF
    Middleboxes (MBs) are ubiquitous in modern data centre (DC) due to their crucial role in implementing network security, management and optimisation. In order to meet network policy's requirement on correct traversal of an ordered sequence of MBs, network administrators rely on static policy based routing or VLAN stitching to steer traffic flows. However, dynamic virtual server migration in virtual environment has greatly challenged such static traffic steering. In this paper, we design and implement Sync, an efficient and synergistic scheme to jointly consolidate network policies and virtual machines (VMs), in a readily deployable Mininet environment. We present the architecture of Sync framework and open source its code. We also extensively evaluate Sync over diverse workload and policies. Our results show that in an emulated DC of 686 servers, 10k VMs, 8k policies, and 100k flows, Sync processes a group of 900 VMs and 10 VMs in 634 seconds and 4 seconds respectively

    Resource allocation for dataflow applications in FANETs using anypath routing

    Get PDF
    Management of network resources in advanced IoT applications is a challenging topic due to their distributed nature from the Edge to the Cloud, and the heavy demand of real-time data from many sources to take action in the deployment. FANETs (Flying Ad-hoc Networks) are a clear example of heterogeneous multi-modal use cases, which require strict quality in the network communications, as well as the coordination of the computing capabilities, in order to operate correctly the final service. In this paper, we present a Virtual Network Embedding (VNE) framework designed for the allocation of dataflow applications, composed of nano-services that produce or consume data, in a wireless infrastructure, such as an airborne network. To address the problem, an anypath-based heuristic algorithm that considers the quality demand of the communication between nano-services is proposed, coined as Quality-Revenue Paired Anypath Dataflow VNE (QRPAD-VNE). We also provide a simulation environment for the evaluation of its performance according to the virtual network (VN) request load in the system. Finally, we show the suitability of a multi-parameter framework in conjunction with anypath routing in order to have better performance results that guarantee minimum quality in the wireless communications.Xunta de Galicia | Ref. ED431C 2022/04 T254Ministerio de Universidades | Ref. FPU19/01284Agencia Estatal de Investigación | Ref. PCI2020-112174Agencia Estatal de Investigación | Ref. PID2020-113795RB-C33Agencia Estatal de Investigación | Ref. PID2020-116329GB-C21Universidade de Vigo/CISU
    corecore