16,687 research outputs found

    An Experimental Nexos Laboratory Using Virtual Xinu

    Get PDF
    The Nexos Project is a joint effort between Marquette University, the University of Buffalo, and the University of Mississippi to build curriculum materials and a supporting experimental laboratory for hands-on projects in computer systems courses. The approach focuses on inexpensive, flexible, commodity embedded hardware, freely available development and debugging tools, and a fresh implementation of a classic operating system, Embedded Xinu, that is ideal for student exploration. This paper describes an extension to the Nexos laboratory that includes a new target platform composed of Qemu virtual machines. Virtual Xinu addresses two challenges that limit the effectiveness of Nexos. First, potential faculty adopters have clearly indicated that even with the current minimal monetary cost of installation, the hardware modifications, and time investment remain troublesome factors that scare off interested educators. Second, overcoming the inherent complications that arise due to the shared subnet that result in students\u27 projects interfering with each other in ways that are difficult to recreate, debug, and understand. Specifically, this paper discusses porting the Xinu operating systems to Qemu virtual hardware, developing the virtual networking platform, and results showing success using Virtual Xinu in the classroom during one semester of Operating Systems at the University of Mississippi

    Advances in Teaching & Learning Day Abstracts 2005

    Get PDF
    Proceedings of the Advances in Teaching & Learning Day Regional Conference held at The University of Texas Health Science Center at Houston in 2005

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie
    corecore