93 research outputs found

    Expanding Navigation Systems by Integrating It with Advanced Technologies

    Get PDF
    Navigation systems provide the optimized route from one location to another. It is mainly assisted by external technologies such as Global Positioning System (GPS) and satellite-based radio navigation systems. GPS has many advantages such as high accuracy, available anywhere, reliable, and self-calibrated. However, GPS is limited to outdoor operations. The practice of combining different sources of data to improve the overall outcome is commonly used in various domains. GIS is already integrated with GPS to provide the visualization and realization aspects of a given location. Internet of things (IoT) is a growing domain, where embedded sensors are connected to the Internet and so IoT improves existing navigation systems and expands its capabilities. This chapter proposes a framework based on the integration of GPS, GIS, IoT, and mobile communications to provide a comprehensive and accurate navigation solution. In the next section, we outline the limitations of GPS, and then we describe the integration of GIS, smartphones, and GPS to enable its use in mobile applications. For the rest of this chapter, we introduce various navigation implementations using alternate technologies integrated with GPS or operated as standalone devices

    Personal Shopping Assistance and Navigator System for Visually Impaired People

    Get PDF
    International audienceIn this paper, a personal assistant and navigator system for visually impaired people will be described. The showcase presented in-tends to demonstrate how partially sighted people could be aided by the technology in performing an ordinary activity, like going to a mall and moving inside it to find a specific product. We propose an Android ap-plication that integrates Pedestrian Dead Reckoning and Computer Vi-sion algorithms, using an off-the-shelf Smartphone connected to a Smart-watch. The detection, recognition and pose estimation of specific objects or features in the scene derive an estimate of user location with sub-meter accuracy when combined with a hardware-sensor pedometer. The pro-posed prototype interfaces with a user by means of Augmented Reality, exploring a variety of sensorial modalities other than just visual overlay, namely audio and haptic modalities, to create a seamless immersive user experience. The interface and interaction of the preliminary platform have been studied through specific evaluation methods. The feedback gathered will be taken into consideration to further improve the pro-posed system

    a smart multi sensor approach to monitoring weak people in indoor environments

    Get PDF
    This paper deals with a novel system to assist weak people while exploring indoor environments. The proposed architecture is aimed to monitor the position and inertial behavior of users as well as environmental status (e.g. temperature, humidity, gases leakage, or smoke). The system is based on a Wireless Sensor Network and smart paradigms which extract relevant information from data collected through the multi-sensor architecture. The data collected are then processed to build awareness of User-Environment Interaction and User-Environment Contextualization. This knowledge is used to build information that is useful to the user for safe and efficient exploitation of the environment and to the supervisor for a suitable assessment and management of hazard situations. The paper mainly focuses on the multi-sensor system architecture and smart paradigms used to implement the User-Environment Contextualization feature
    • …
    corecore