25 research outputs found

    ์ด์ง„ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ๋ฅผ ์œ„ํ•œ DRAM ๊ธฐ๋ฐ˜์˜ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๊ฐ€์†๊ธฐ ๊ตฌ์กฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2021. 2. ์œ ์Šน์ฃผ.In the convolutional neural network applications, most computations occurred by the multiplication and accumulation of the convolution and fully-connected layers. From the hardware perspective (i.e., in the gate-level circuits), these operations are performed by many dot-products between the feature map and kernel vectors. Since the feature map and kernel have the matrix form, the vector converted from 3D, or 4D matrices is reused many times for the matrix multiplications. As the throughput of the DNN increases, the power consumption and performance bottleneck due to the data movement become a more critical issue. More importantly, power consumption due to off-chip memory accesses dominates total power since off-chip memory access consumes several hundred times greater power than the computation. The accelerators' throughput is about several hundred GOPS~several TOPS, but Memory bandwidth is less than 25.6 or 34 GB/s (with DDR4 or LPDDR4). By reducing the network size and/or data movement size, both data movement power and performance bottleneck problems are improved. Among the algorithms, Quantization is widely used. Binary Neural Networks (BNNs) dramatically reduce precision down to 1 bit. The accuracy is much lower than that of the FP16, but the accuracy is continuously improving through various studies. With the data flow control, there is a method of reducing redundant data movement by increasing data reuse. The above two methods are widely applied in accelerators because they do not need additional computations in the inference computation. In this dissertation, I present 1) a DRAM-based accelerator architecture and 2) a DRAM refresh method to improve performance reduction due to DRAM refresh. Both methods are orthogonal, so can be integrated into the DRAM chip and operate independently. First, we proposed a DRAM-based accelerator architecture capable of massive and large vector dot product operation. In the field of CNN accelerators to which BNN can be applied, a computing-in-memory (CIM) structure that utilizes a cell-array structure of Memory for vector dot product operation is being actively studied. Since DRAM stores all the neural network data, it is advantageous to reduce the amount of data transfer. The proposed architecture operates by utilizing the basic operation of the DRAM. The second method is to reduce the performance degradation and power consumption caused by DRAM refresh. Since the DRAM cannot read and write data while performing a periodic refresh, system performance decreases. The proposed refresh method tests the refresh characteristics inside the DRAM chip during self-refresh and increases the refresh cycle according to the characteristics. Since it operates independently inside DRAM, it can be applied to all systems using DRAM and is the same for deep neural network accelerators. We surveyed system integration with a software stack to use the in-DRAM accelerator in the DL framework. As a result, it is expected to control in-DRAM accelerators with the memory controller implementation method verified in the previous experiment. Also, we have added the performance simulation function of in-DRAM accelerator to PyTorch. When running a neural network in PyTorch, it reports the computation latency and data movement latency occurring in the layer running in the in-DRAM accelerator. It is a significant advantage to predict the performance when running in hardware while co-designing the network.์ปจ๋ณผ๋ฃจ์…”๋„ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ (CNN) ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ๋Š”, ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ์‚ฐ์ด ์ปจ๋ณผ๋ฃจ์…˜ ๋ ˆ์ด์–ด์™€ ํ’€๋ฆฌ-์ปค๋„ฅํ‹ฐ๋“œ ๋ ˆ์ด์–ด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ณฑ์…ˆ๊ณผ ๋ˆ„์  ์—ฐ์‚ฐ์ด๋‹ค. ๊ฒŒ์ดํŠธ-๋กœ์ง ๋ ˆ๋ฒจ์—์„œ๋Š”, ๋Œ€๋Ÿ‰์˜ ๋ฒกํ„ฐ ๋‚ด์ ์œผ๋กœ ์‹คํ–‰๋˜๋ฉฐ, ์ž…๋ ฅ๊ณผ ์ปค๋„ ๋ฒกํ„ฐ๋“ค์„ ๋ฐ˜๋ณตํ•ด์„œ ์‚ฌ์šฉํ•˜์—ฌ ์—ฐ์‚ฐํ•œ๋‹ค. ๋”ฅ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ์—ฐ์‚ฐ์—๋Š” ๋ฒ”์šฉ ์—ฐ์‚ฐ ์œ ๋‹›๋ณด๋‹ค, ๋‹จ์ˆœํ•œ ์—ฐ์‚ฐ์ด ๊ฐ€๋Šฅํ•œ ์ž‘์€ ์—ฐ์‚ฐ ์œ ๋‹›์„ ๋Œ€๋Ÿ‰์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ ํ•ฉํ•˜๋‹ค. ๊ฐ€์†๊ธฐ์˜ ์„ฑ๋Šฅ์ด ์ผ์ • ์ด์ƒ ๋†’์•„์ง€๋ฉด, ๊ฐ€์†๊ธฐ์˜ ์„ฑ๋Šฅ์€ ์—ฐ์‚ฐ์— ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ ์ „์†ก์— ์˜ํ•ด ์ œํ•œ๋œ๋‹ค. ๋ฉ”๋ชจ๋ฆฌ์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์˜คํ”„-์นฉ์œผ๋กœ ์ „์†กํ•  ๋•Œ์˜ ์—๋„ˆ์ง€ ์†Œ๋ชจ๊ฐ€, ์—ฐ์‚ฐ ์œ ๋‹›์—์„œ ์—ฐ์‚ฐ์— ์‚ฌ์šฉ๋˜๋Š” ์—๋„ˆ์ง€์˜ ์ˆ˜๋ฐฑ๋ฐฐ๋กœ ํฌ๋‹ค. ๋˜ํ•œ ์—ฐ์‚ฐ๊ธฐ์˜ ์„ฑ๋Šฅ์€ ์ดˆ๋‹น ์ˆ˜๋ฐฑ ๊ธฐ๊ฐ€~์ˆ˜ ํ…Œ๋ผ-์—ฐ์‚ฐ์ด ๊ฐ€๋Šฅํ•˜์ง€๋งŒ, ๋ฉ”๋ชจ๋ฆฌ์˜ ๋ฐ์ดํ„ฐ ์ „์†ก์€ ์ดˆ๋‹น ์ˆ˜์‹ญ ๊ธฐ๊ฐ€ ๋ฐ”์ดํŠธ์ด๋‹ค. ๋ฐ์ดํ„ฐ ์ „์†ก์— ์˜ํ•œ ํŒŒ์›Œ์™€ ์„ฑ๋Šฅ ๋ฌธ์ œ๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ๋ฒ•์€, ์ „์†ก๋˜๋Š” ๋ฐ์ดํ„ฐ ํฌ๊ธฐ๋ฅผ ์ค„์ด๋Š” ๊ฒƒ์ด๋‹ค. ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘์—์„œ๋Š” ๋„คํŠธ์›Œํฌ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์–‘์žํ™”ํ•˜์—ฌ, ๋‚ฎ์€ ์ •๋ฐ€๋„๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ๋„๋ฆฌ ์‚ฌ์šฉ๋œ๋‹ค. ์ด์ง„ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ(BNN)๋Š” ์ •๋ฐ€๋„๋ฅผ 1๋น„ํŠธ๊นŒ์ง€ ๊ทน๋‹จ์ ์œผ๋กœ ๋‚ฎ์ถ˜๋‹ค. 16๋น„ํŠธ ์ •๋ฐ€๋„๋ณด๋‹ค ๋„คํŠธ์›Œํฌ์˜ ์ •ํ™•๋„๊ฐ€ ๋‚ฎ์•„์ง€๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ์ง€๋งŒ, ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์ •ํ™•๋„๊ฐ€ ์ง€์†์ ์œผ๋กœ ๊ฐœ์„ ๋˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ๊ตฌ์กฐ์ ์œผ๋กœ๋Š”, ์ „์†ก๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์žฌ์‚ฌ์šฉํ•˜์—ฌ ๋™์ผํ•œ ๋ฐ์ดํ„ฐ์˜ ๋ฐ˜๋ณต์ ์ธ ์ „์†ก์„ ์ค„์ด๋Š” ๋ฐฉ๋ฒ•์ด ์žˆ๋‹ค. ์œ„์˜ ๋‘ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์€ ์ถ”๋ก  ๊ณผ์ •์—์„œ ๋ณ„๋„์˜ ์—ฐ์‚ฐ ์—†์ด ์ ์šฉ ๊ฐ€๋Šฅํ•˜์—ฌ ๊ฐ€์†๊ธฐ์—์„œ ๋„๋ฆฌ ์ ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š”, DRAM ๊ธฐ๋ฐ˜์˜ ๊ฐ€์†๊ธฐ ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•˜๊ณ , DRAM refresh์— ์˜ํ•œ ์„ฑ๋Šฅ ๊ฐ์†Œ๋ฅผ ๊ฐœ์„ ํ•˜๋Š” ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋‘ ๋ฐฉ๋ฒ•์€ ํ•˜๋‚˜์˜ DRAM ์นฉ์œผ๋กœ ์ง‘์  ๊ฐ€๋Šฅํ•˜๋ฉฐ, ๋…๋ฆฝ์ ์œผ๋กœ ๊ตฌ๋™ ๊ฐ€๋Šฅํ•˜๋‹ค. ์ฒซ๋ฒˆ์งธ๋Š” ๋Œ€๋Ÿ‰์˜ ๋ฒกํ„ฐ ๋‚ด์  ์—ฐ์‚ฐ์ด ๊ฐ€๋Šฅํ•œ DRAM ๊ธฐ๋ฐ˜ ๊ฐ€์†๊ธฐ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์ด๋‹ค. BNN์„ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” CNN๊ฐ€์†๊ธฐ ๋ถ„์•ผ์—์„œ, ๋ฉ”๋ชจ๋ฆฌ์˜ ์…€-์–ด๋ ˆ์ด ๊ตฌ์กฐ๋ฅผ ๋ฒกํ„ฐ ๋‚ด์  ์—ฐ์‚ฐ์— ํ™œ์šฉํ•˜๋Š” ์ปดํ“จํŒ…-์ธ-๋ฉ”๋ชจ๋ฆฌ(CIM) ๊ตฌ์กฐ๊ฐ€ ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, DRAM์—๋Š” ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ์˜ ๋ชจ๋“  ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ๋ฐ์ดํ„ฐ ์ „์†ก๋Ÿ‰์˜ ๊ฐ์†Œ์— ์œ ๋ฆฌํ•˜๋‹ค. ์šฐ๋ฆฌ๋Š” DRAM ์…€-์–ด๋ ˆ์ด์˜ ๊ตฌ์กฐ๋ฅผ ๋ฐ”๊พธ์ง€ ์•Š๊ณ , DRAM์˜ ๊ธฐ๋ณธ ๋™์ž‘์„ ํ™œ์šฉํ•˜์—ฌ ์—ฐ์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋‘๋ฒˆ์งธ๋Š” DRAM ๋ฆฌํ”„๋ ˆ์‰ฌ ์ฃผ๊ธฐ๋ฅผ ๋Š˜๋ ค์„œ ์„ฑ๋Šฅ ์—ดํ™”์™€ ํŒŒ์›Œ ์†Œ๋ชจ๋ฅผ ๊ฐœ์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. DRAM์ด ๋ฆฌํ”„๋ ˆ์‰ฌ๋ฅผ ์‹คํ–‰ํ•  ๋•Œ๋งˆ๋‹ค, ๋ฐ์ดํ„ฐ๋ฅผ ์ฝ๊ณ  ์“ธ ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์— ์‹œ์Šคํ…œ ํ˜น์€ ๊ฐ€์†๊ธฐ์˜ ์„ฑ๋Šฅ ๊ฐ์†Œ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. DRAM ์นฉ ๋‚ด๋ถ€์—์„œ DRAM์˜ ๋ฆฌํ”„๋ ˆ์‰ฌ ํŠน์„ฑ์„ ํ…Œ์ŠคํŠธํ•˜๊ณ , ๋ฆฌํ”„๋ ˆ์‰ฌ ์ฃผ๊ธฐ๋ฅผ ๋Š˜๋ฆฌ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. DRAM ๋‚ด๋ถ€์—์„œ ๋…๋ฆฝ์ ์œผ๋กœ ๋™์ž‘ํ•˜๊ธฐ ๋•Œ๋ฌธ์— DRAM์„ ์‚ฌ์šฉํ•˜๋Š” ๋ชจ๋“  ์‹œ์Šคํ…œ์— ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ๋”ฅ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๊ฐ€์†๊ธฐ์—์„œ๋„ ๋™์ผํ•˜๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ๋œ ๊ฐ€์†๊ธฐ๋ฅผ PyTorch์™€ ๊ฐ™์ด ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๋”ฅ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„ ์›Œํฌ์—์„œ๋„ ์‰ฝ๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก, ์†Œํ”„ํŠธ์›จ์–ด ์Šคํƒ์„ ๋น„๋กฏํ•œ system integration ๋ฐฉ๋ฒ•์„ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ๊ธฐ์กด์˜ TVM compiler์™€ FPGA๋กœ ๊ตฌํ˜„ํ•˜๋Š” TVM/VTA ๊ฐ€์†๊ธฐ์—, DRAM refresh ์‹คํ—˜์—์„œ ๊ฒ€์ฆ๋œ ๋ฉ”๋ชจ๋ฆฌ ์ปจํŠธ๋กค๋Ÿฌ์™€ ์ปค์Šคํ…€ ์ปดํŒŒ์ผ๋Ÿฌ๋ฅผ ์ถ”๊ฐ€ํ•˜๋ฉด in-DRAM ๊ฐ€์†๊ธฐ๋ฅผ ์ œ์–ดํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ์ด์— ๋”ํ•˜์—ฌ, in-DRAM ๊ฐ€์†๊ธฐ์™€ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ์˜ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ ์„ฑ๋Šฅ์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋„๋ก, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋Šฅ์„ PyTorch์— ์ถ”๊ฐ€ํ•˜์˜€๋‹ค. PyTorch์—์„œ ์‹ ๊ฒฝ๋ง์„ ์‹คํ–‰ํ•  ๋•Œ, DRAM ๊ฐ€์†๊ธฐ์—์„œ ์‹คํ–‰๋˜๋Š” ๊ณ„์ธต์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ณ„์‚ฐ ๋Œ€๊ธฐ ์‹œ๊ฐ„ ๋ฐ ๋ฐ์ดํ„ฐ ์ด๋™ ์‹œ๊ฐ„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.Abstract i Contents viii List of Tables x List of Figures xiv Chapter 1 Introduction 1 Chapter 2 Background 6 2.1 Neural Network Operation . . . . . . . . . . . . . . . . 6 2.2 Data Movement Overhead . . . . . . . . . . . . . . . . 7 2.3 Binary Neural Networks . . . . . . . . . . . . . . . . . 10 2.4 Computing-in-Memory . . . . . . . . . . . . . . . . . . 11 2.5 Memory Bottleneck due to Refresh . . . . . . . . . . . . 13 Chapter 3 In-DRAM Neural Network Accelerator 16 3.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 DRAM hierarchy . . . . . . . . . . . . . . . . . 18 3.1.2 DRAM Basic Operation . . . . . . . . . . . . . 21 3.1.3 DRAM Commands with Timing Parameters . . . 22 3.1.4 Bit-wise Operation in DRAM . . . . . . . . . . 25 3.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 Proposed architecture . . . . . . . . . . . . . . . . . . . 30 3.3.1 Operation Examples of Row Operator . . . . . . 32 3.3.2 Convolutions on DRAM Chip . . . . . . . . . . 39 3.4 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4.1 Input Broadcasting in DRAM . . . . . . . . . . 44 3.4.2 Input Data Movement With M2V . . . . . . . . . 47 3.4.3 Internal Data Movement With SiD . . . . . . . . 49 3.4.4 Data Partitioning for Parallel Operation . . . . . 52 3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 56 3.5.1 Performance Estimation . . . . . . . . . . . . . 56 3.5.2 Configuration of In-DRAM Accelerator . . . . . 58 3.5.3 Improving the Accuracy of BNN . . . . . . . . . 60 3.5.4 Comparison with the Existing Works . . . . . . . 62 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.6.1 Performance Comparison with ASIC Accelerators 67 3.6.2 Challenges of The Proposed Architecture . . . . 70 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 72 Chapter 4 Reducing DRAM Refresh Power Consumption by Runtime Profiling of Retention Time and Dualrow Activation 74 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . 77 4.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5 Solution overview . . . . . . . . . . . . . . . . . . . . . 88 4.6 Runtime profiling . . . . . . . . . . . . . . . . . . . . . 93 4.6.1 Basic Operation . . . . . . . . . . . . . . . . . . 93 4.6.2 Profiling Multiple Rows in Parallel . . . . . . . . 96 4.6.3 Temperature, Data Backup and Error Check . . . 96 4.7 Dual-row Activation . . . . . . . . . . . . . . . . . . . . 98 4.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 102 4.8.1 Experimental Setup . . . . . . . . . . . . . . . . 103 4.8.2 Refresh Period Improvement . . . . . . . . . . . 107 4.8.3 Power Reduction . . . . . . . . . . . . . . . . . 110 4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 116 Chapter 5 System Integration 118 5.1 Integrate The Proposed Methods . . . . . . . . . . . . . 118 5.2 Software Stack . . . . . . . . . . . . . . . . . . . . . . 121 Chapter 6 Conclusion 129 Bibliography 131 ๊ตญ๋ฌธ์ดˆ๋ก 153Docto

    North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 2

    Get PDF
    This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such a neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies

    The 1991 research and technology report, Goddard Space Flight Center

    Get PDF
    The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test

    Reports to the President

    Get PDF
    A compilation of annual reports for the 1985-1986 academic year, including a report from the President of the Massachusetts Institute of Technology, as well as reports from the academic and administrative units of the Institute. The reports outline the year's goals, accomplishments, honors and awards, and future plans

    Technology 2002: the Third National Technology Transfer Conference and Exposition, Volume 1

    Get PDF
    The proceedings from the conference are presented. The topics covered include the following: computer technology, advanced manufacturing, materials science, biotechnology, and electronics

    Reports to the President

    Get PDF
    A compilation of annual reports for the 1982-1983 academic year, including a report from the President of the Massachusetts Institute of Technology, as well as reports from the academic and administrative units of the Institute. The reports outline the year's goals, accomplishments, honors and awards, and future plans

    A very high density VLSI implementation of threshold network ensembles (TNE)

    No full text
    This paper describes a hardware implementation of threshold network ensembles (TNE) for classification applications. We first describe the algorithm and compare its performance with those of individual classifiers such as binary neural network and support vector machine (SVM). The effect of limited precision on the performance of threshold network ensembles is also investigated. The proposed multi-precision architecture is then mapped into a scalable systolic architecture implemented first on a single VLSI chip. The modularity and the easy programability of the basic chip has made possible the extension of the architecture to a low cost multi-chip solution. We propose a 3D packaged circuit in which 12 basic chips have been integrated into a very compact volume of (2 x 2 x 0.7)cm(3). Successful operation of the 3D prototype is demonstrated through experimental test results of the chip

    Proceedings of the Mobile Satellite Conference

    Get PDF
    A satellite-based mobile communications system provides voice and data communications to mobile users over a vast geographic area. The technical and service characteristics of mobile satellite systems (MSSs) are presented and form an in-depth view of the current MSS status at the system and subsystem levels. Major emphasis is placed on developments, current and future, in the following critical MSS technology areas: vehicle antennas, networking, modulation and coding, speech compression, channel characterization, space segment technology and MSS experiments. Also, the mobile satellite communications needs of government agencies are addressed, as is the MSS potential to fulfill them

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 03)

    Get PDF
    Bibliographies and abstracts are listed for 1221 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and June 30, 1991. Topics covered include large space structures and systems, space stations, extravehicular activity, thermal environments and control, tethering, spacecraft power supplies, structural concepts and control systems, electronics, advanced materials, propulsion, policies and international cooperation, vibration and dynamic controls, robotics and remote operations, data and communication systems, electric power generation, space commercialization, orbital transfer, and human factors engineering
    corecore