4,182 research outputs found

    Lessons learned from the design of a mobile multimedia system in the Moby Dick project

    Get PDF
    Recent advances in wireless networking technology and the exponential development of semiconductor technology have engendered a new paradigm of computing, called personal mobile computing or ubiquitous computing. This offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The research performed in the MOBY DICK project is about designing such a mobile multimedia system. This paper discusses the approach made in the MOBY DICK project to solve some of these problems, discusses its contributions, and accesses what was learned from the project

    Analog VLSI-Based Modeling of the Primate Oculomotor System

    Get PDF
    One way to understand a neurobiological system is by building a simulacrum that replicates its behavior in real time using similar constraints. Analog very large-scale integrated (VLSI) electronic circuit technology provides such an enabling technology. We here describe a neuromorphic system that is part of a long-term effort to understand the primate oculomotor system. It requires both fast sensory processing and fast motor control to interact with the world. A one-dimensional hardware model of the primate eye has been built that simulates the physical dynamics of the biological system. It is driven by two different analog VLSI chips, one mimicking cortical visual processing for target selection and tracking and another modeling brain stem circuits that drive the eye muscles. Our oculomotor plant demonstrates both smooth pursuit movements, driven by a retinal velocity error signal, and saccadic eye movements, controlled by retinal position error, and can reproduce several behavioral, stimulation, lesion, and adaptation experiments performed on primates

    Tag-Cloud Drawing: Algorithms for Cloud Visualization

    Get PDF
    Tag clouds provide an aggregate of tag-usage statistics. They are typically sent as in-line HTML to browsers. However, display mechanisms suited for ordinary text are not ideal for tags, because font sizes may vary widely on a line. As well, the typical layout does not account for relationships that may be known between tags. This paper presents models and algorithms to improve the display of tag clouds that consist of in-line HTML, as well as algorithms that use nested tables to achieve a more general 2-dimensional layout in which tag relationships are considered. The first algorithms leverage prior work in typesetting and rectangle packing, whereas the second group of algorithms leverage prior work in Electronic Design Automation. Experiments show our algorithms can be efficiently implemented and perform well.Comment: To appear in proceedings of Tagging and Metadata for Social Information Organization (WWW 2007

    Clustering in ICT: From Route 128 to Silicon Valley, from DEC to Google, from Hardware to Content

    Get PDF
    One of the pioneers in academic entrepreneurship and high-tech clustering is MIT and the Route 128/Boston region. Silicon Valley centered around Stanford University was originally a fast follower and only later emerged as a scientific and industrial hotspot. Several technology and innovation waves, have shaped Silicon Valley over all the years. The initial regional success of Silicon Valley started with electro-technical instruments and defense applications in the 1940s and 1950s (represented by companies as Litton Engineering and Hewlett & Packard). In the 1960s and 1970s, the region became a national and international leader in the design and production of integrated circuit and computer chips, and as such became identified as Silicon Valley (e.g. Fairchild Semiconductor, and Intel). In the 1970s and 1980s, Silicon Valley capitalised further on the development, manufacturing and sales of the personal computer and workstations (e.g. Apple, Silicon Graphics and SUN), followed by the proliferation of telecommunications and Internet technologies in the 1990s (e.g. Cisco, 3Com) and Internet-based applications and info-mediation services (e.g. Yahoo, Google) in the late 1990s and early 2000s. When the external and/or internal conditions of its key industries change, Silicon Valley seemed to have an innate capability to restructure itself by a rapid and frequent reshuffling of people, competencies, resources and firms. To characterise the demise of one firm leading, directly or indirectly, to the formation of another and the reconfiguration of business models and product offerings by the larger companies in emerging industries, Bahrami & Evans (2000) introduced the term `flexible recycling.’ This dynamic process of learning by doing, failing and recombining (i.e. allowing new firms to rise from the ashes of failed enterprises) is one of the key factors underlying the dominance of Silicon Valley in the new economy.ICT;Clusters;Networks;Academic entrepreneurship;MIT;Silicon Valley;Stanford University;Flexible recycling;Route 128

    A procedural method for the efficient implementation of full-custom VLSI designs

    Get PDF
    An imbedded language system for the layout of very large scale integration (VLSI) circuits is examined. It is shown that through the judicious use of this system, a large variety of circuits can be designed with circuit density and performance comparable to traditional full-custom design methods, but with design costs more comparable to semi-custom design methods. The high performance of this methodology is attributable to the flexibility of procedural descriptions of VLSI layouts and to a number of automatic and semi-automatic tools within the system

    A comparative analysis of the location behaviour of the US and European semiconductor manufacturers

    Get PDF
    Our paper analyses micro-level data from the US and European semiconductor manufacturers. In particular, we will focus on the plants undertaking the wafer manufacturing processes. We integrate a range of production technological indices with spatial data and regional economic variables in order to understand the issues determining the location behavior of the industry. Our results indicate that the locational behaviors of the US and European wafer plants do not correspond to an orthodox product-life-cycle model.
    corecore