7,249 research outputs found

    Virtual Prototyping for Rapid Product Development

    Get PDF
    link_to_OA_fulltex

    Augmented reality usage for prototyping speed up

    Full text link
    The first part of the article describes our approach for solution of this problem by means of Augmented Reality. The merging of the real world model and digital objects allows streamline the work with the model and speed up the whole production phase significantly. The main advantage of augmented reality is the possibility of direct manipulation with the scene using a portable digital camera. Also adding digital objects into the scene could be done using identification markers placed on the surface of the model. Therefore it is not necessary to work with special input devices and lose the contact with the real world model. Adjustments are done directly on the model. The key problem of outlined solution is the ability of identification of an object within the camera picture and its replacement with the digital object. The second part of the article is focused especially on the identification of exact position and orientation of the marker within the picture. The identification marker is generalized into the triple of points which represents a general plane in space. There is discussed the space identification of these points and the description of representation of their position and orientation be means of transformation matrix. This matrix is used for rendering of the graphical objects (e. g. in OpenGL and Direct3D).Comment: Keywords: augmented reality, prototyping, pose estimation, transformation matri

    A multi-material virtual prototyping system for biomedical applications

    Get PDF
    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module, and a virtual reality (VR) simulation module. The DMMVP module is used for design and process planning of discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multimaterial (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multimaterial objects, which can be subsequently visualized and analyzed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a human dextrocardic heart made of discrete multi-materials and a hip joint assembly of FGM are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show the MMVP system is a practical tool for modelling, visualization, process planning, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. ©2009 IEEE.published_or_final_versionThe IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems (VECIMS) 2009, Hong Kong, 11-13 May 2009. In Proceedings of the IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems, 2009, p. 73-7

    Digital fabrication of multi-material biomedical objects

    Get PDF
    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.postprin

    Research Towards High Speed Freeforming

    Get PDF
    Additive manufacturing (AM) methods are currently utilised for the manufacture of prototypes and low volume, high cost parts. This is because in most cases the high material costs and low volumetric deposition rates of AM parts result in higher per part cost than traditional manufacturing methods. This paper brings together recent research aimed at improving the economics of AM, in particular Extrusion Freeforming (EF). A new class of machine is described called High Speed Additive Manufacturing (HSAM) in which software, hardware and materials advances are aggregated. HSAM could be cost competitive with injection moulding for medium sized medium quantity parts. A general outline for a HSAM machine and supply chain is provided along with future required research

    LTE Spectrum Sharing Research Testbed: Integrated Hardware, Software, Network and Data

    Full text link
    This paper presents Virginia Tech's wireless testbed supporting research on long-term evolution (LTE) signaling and radio frequency (RF) spectrum coexistence. LTE is continuously refined and new features released. As the communications contexts for LTE expand, new research problems arise and include operation in harsh RF signaling environments and coexistence with other radios. Our testbed provides an integrated research tool for investigating these and other research problems; it allows analyzing the severity of the problem, designing and rapidly prototyping solutions, and assessing them with standard-compliant equipment and test procedures. The modular testbed integrates general-purpose software-defined radio hardware, LTE-specific test equipment, RF components, free open-source and commercial LTE software, a configurable RF network and recorded radar waveform samples. It supports RF channel emulated and over-the-air radiated modes. The testbed can be remotely accessed and configured. An RF switching network allows for designing many different experiments that can involve a variety of real and virtual radios with support for multiple-input multiple-output (MIMO) antenna operation. We present the testbed, the research it has enabled and some valuable lessons that we learned and that may help designing, developing, and operating future wireless testbeds.Comment: In Proceeding of the 10th ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization (WiNTECH), Snowbird, Utah, October 201

    PROSET — A Language for Prototyping with Sets

    Get PDF
    We discuss the prototyping language PROSET(Prototyping with Sets) as a language for experimental and evolutionary prototyping, focusing its attention on algorithm design. Some of PROSET’s features include generative communication, flexible exception handling and the integration of persistence. A discussion of some issues pertaining to the compiler and the programming environment conclude the pape

    Digital Fabrication of Multi-Material Objects for Biomedical Applications

    Get PDF
    Open Access publicationlink_to_OA_fulltex

    Rapid design and manufacture tools in architecture

    Get PDF
    The continuing development of rapid prototyping technologies and the introduction of concept modelling technologies means that their use is expanding into a greater range of applications. The primary aim of this paper is to give the reader an overview of the current state of the art in layered manufacturing (LM) technology and its applicability in the field of architecture. The paper reports on the findings of a benchmarking study, conducted by the Rapid Design and Manufacturing (RDM) Group in Glasgow [G.J. Ryder, A. McGown, W. Ion, G. Green, D. Harrison, B. Wood, Rapid prototyping feasibility report, Rapid Prototyping Group, Glasgow School of Art, 1998.], which identified that the applicability of LM technologies in any application can be governed by a series of critical process and application specific issues. A further survey carried out by the RDM group investigated current model making practice, current 3D CAD use and current use of LM technologies within the field of architecture. The findings are then compared with the capabilities of LM technologies. Future research needs in this area are identified and briefly outlined
    corecore