1,270 research outputs found

    Fluid technology (selected components, devices, and systems): A compilation

    Get PDF
    Developments in fluid technology and hydraulic equipment are presented. The subjects considered are: (1) the use of fluids in the operation of switches, amplifiers, and servo devices, (2) devices and data for laboratory use in the study of fluid dynamics, and (3) the use of fluids as controls and certain methods of controlling fluids

    Strategies for enhancing DC gain and settling performance of amplifiers

    Get PDF
    The operational amplifier (op amp) is one of the most widely used and important building blocks in analog circuit design. High gain and high speed are two important properties of op amps because they determine the settling behavior of the op amps. As supply voltages decrease, the realization of high gain amplifiers with large Gain-Bandwidth-Products (GBW) has become challenging. The major focus in this dissertation is on the negative output impedance gain enhancement technique. The negative impedance gain enhancement technique offers potential for achieving very high gain and energy-efficient fast settling and is low-voltage compatible. Misconceptions that have limited the practical adoption of this gain enhancement technique are discussed. A new negative conductance gain enhancement technique was proposed. The proposed circuit generates a negative conductance with matching requirements for achieving very high DC gain that are less stringent than those for existing -g m gain enhancement schemes. The proposed circuit has potential for precise digital control of a very large DC gain. A prototype fully differential CMOS operational amplifier was designed and fabricated based on the proposed gain enhancement technique. Experimental results which showed a DC gain of 85dB and an output swing of 876mVp-p validated the fundamental performance characteristics of this technique. In a separate section, a new amplifier architecture with bandpass feedforward compensation is presented. It is shown that a bandpass feedforward path can be used to substantially extend the unity-gain-frequency of an operational amplifier. Simulation results predict significant improvements in rise time and settling performance and show that the bandpass compensation scheme is reasonably robust. In the final section, a new technique for asynchronous data recovery based upon using a delay line in the incoming data path is introduced. The proposed data recovery system is well suited for tight tolerance channels and coding systems supporting standards that limit the maximum number of consecutive 0\u27s and 1\u27s in a data stream. This system does not require clock recovery, suffers no loss of data during acquisition, has a reduced sensitivity to jitter in the incoming data and does not exhibit jitter enhancement associated with VCO tracking in a PLL

    A plasma arc jet facility for extraterrestrial atmospheric entry studies

    Get PDF
    Test facility for simulating thermodynamic environments of planetary atmospheric entr

    Research to develop and define concepts for reliable control sensors - The solid state rate sensors Final report

    Get PDF
    Solid state device for sensing angular rate by detecting presence of coriolis force

    Preliminary design of a 100 kW turbine generator

    Get PDF
    The National Science Foundation and the Lewis Research Center have engaged jointly in a Wind Energy Program which includes the design and erection of a 100 kW wind turbine generator. The machine consists primarily of a rotor turbine, transmission, shaft, alternator, and tower. The rotor, measuring 125 feet in diameter and consisting of two variable pitch blades operates at 40 rpm and generates 100 kW of electrical power at 18 mph wind velocity. The entire assembly is placed on top of a tower 100 feet above ground level

    Development of a serial powering scheme and a versatile characterization system for the ATLAS pixel detector upgrade

    Get PDF
    In order to increase the probability of new discoveries the LHC will be upgraded to the HL-LHC. The upgrade of the ATLAS detector is an essential part of this program. The entire ATLAS tracking system will be replaced by an all-silicon detector called Inner Tracker (ITk) which should be able to withstand the increased luminosity. The work presented in this thesis is focused on the ATLAS ITk pixel detector upgrade. Advanced silicon pixel detectors will be an essential part of the ITk pixel detector where they will be used for tracking and vertexing. Characterization of the pixel detectors is one of the required tasks for a successful ATLAS tracker upgrade. Therefore, the work presented in this thesis includes the development of a versatile and modular test system for advanced silicon pixel detectors for the HL-LHC. The performance of the system is verified. Single and quad FE-I4 modules functionalities are characterized with the developed system. The reduction of the material budget of the ATLAS ITk pixel detector is essential for a successful operation at high luminosity. Therefore, a low mass, efficient power distribution scheme to power detector modules (serial powering scheme) is investigated as well in the framework of this thesis. A serially powered pixel detector prototype is built with all the components that are needed for current distribution, data transmission, sensor biasing, bypassing and redundancy in order to prove the feasibility of implementing the serial powering scheme in the ITk. Detailed investigations of the electrical performance of the detector prototype equipped with FE-I4 quad modules are made with the help of the developed readout system

    Methods for Determining Blood Flow Through Intact Vessels of Experimental Animals Under Conditions of Gravitational Stress and in Extra-terrestrial Space Capsules Final Report, 1 Nov. 1960 - 31 Dec. 1964

    Get PDF
    Electromagnetic blood flow meter to determine blood flow through intact vessels of test animals in gravitational stress and in extraterrestrial space capsule

    Rectification, amplification and switching capabilities for energy harvesting systems: power management circuit for piezoelectric energy harvester

    Get PDF
    Dissertação de mestrado em Biomedical EngineeringA new energy mechanism needs to be addressed to overcome the battery dependency, and consequently extend Wireless Sensor Nodes (WSN) lifetime effectively. Energy Harvesting is a promising technology that can fulfill that premise. This work consists of the realization of circuit components employable in a management system for a piezoelectric-based energy harvester, with low power consumption and high efficiency. The implementation of energy harvesting systems is necessary to power-up front-end applications without any battery. The input power and voltage levels generated by the piezoelectric transducer are relatively low, especially in small-scale systems, as such extra care has to be taken in power consumption and efficiency of the circuits. The main contribution of this work is a system capable of amplifying, rectifying and switching the unstable signal from an energy harvester source. The circuit components are designed based on 0.13 Complementary Metal-Oxide-Semiconductor (CMOS) technology. An analog switch, capable of driving the harvesting circuit at a frequency between 1 and 1 , with proper temperature behaviour, is designed and verified. An OFF resistance of 520.6 Ω and isolation of −111.24 , grant excellent isolation to the circuit. The designed voltage amplifier is capable of amplifying a minor signal with a gain of 42.56 , while requiring low power consumption. The output signal is satisfactorily amplified with a reduced offset voltage of 8 . A new architecture of a two-stage active rectifier is proposed. The power conversion efficiency is 40.4%, with a voltage efficiency of up to 90%. Low power consumption of 17.7 is achieved by the rectifier, with the embedded comparator consuming 113.9 . The outcomes validate the circuit’s power demands, which can be used for other similar applications in biomedical, industrial, and commercial fields.Para combater a dependência dos dispositivos eletrónicos relativamente ás baterias é necessário um novo sistema energético, que permita prolongar o tempo de vida útil dos mesmos. Energy Harvesting é uma tecnologia promissora utilizada para alimentar dispositivos sem bateria. Este trabalho consiste na realização de componentes empregáveis num circuito global para extrair energia a partir ds vibrações de um piezoelétricos com baixo consumo de energia e alta eficiência. Os níveis de potência e voltagem gerados pelo transdutor piezoelétrico são relativamente baixos, especialmente em sistemas de pequena escala, por isso requerem cuidado extra relativamente ao consumo de energia e eficiência dos circuitos. A principal contribuição deste trabalho é um sistema apropriado para amplificar, retificar e alternar o sinal instável proveniente de uma fonte de energy harvesting. Os componentes do sistema são implementados com base na tecnologia CMOS com 0.13 . Um interruptor analógico capaz de modelar a frequência do sinal entre 1 e 1 e estável perante variações de temperatura, é implementado. O circuito tem um excelente isolamento de −111.24 , devido a uma resistência OFF de 520.6 Ω. O amplificador implementado é apto a amplificar um pequeno sinal com um ganho de 42.56 e baixo consumo. O sinal de saída é satisfatoriamente amplificado com uma voltagem de offset de 8 . Um retificador ativo de dois estágios com uma nova arquitetura é proposto. A eficiência de conversão de energia atinge os 40.4%, com uma eficiência de voltagem até 90%. O retificador consome pouca energia, apenas 17.7 , incorporando um comparador de 113.9 . Os resultados validam as exigências energéticas do circuito, que pode ser usado para outras aplicações similares no campo biomédico, industrial e comercial

    Electronic system for data acquisition and control of a automotive brake test bench

    Get PDF
    Trabalho de Conclusão de Curso (graduação)—Universidade de Brasília, Faculdade UnB Gama (FGA), 2018.With the evolution of the automotive industry, vehicles come out of the factory each time with more power and faster top speeds. Along with this enhancement in performance the concern in effectiviness of brake systems should also increase. There are already consolidated standards rules for brake system testing, this project is focused with respect to SAE J2522 regulation that addresses on brakes tests on passenger vehicles. This paper aims to study the major factors regarding brake tests and electronic instrumentation in order to develop an electronic instrument system for automation of a testbench used to perform brake tests. The major output of the project is to design an electronic system able to measure all the relevant physical data and to control the needed actuators

    High Frequency DC/DC Boost Converter

    Get PDF
    The goal of this work was to design and test a functional proof of concept of a high frequency DC to DC boost converter. The scope of this work included the design, simulation, part selection, PCB layout, fabrication, and testing of the three major design blocks. The design uses a closed loop error amplifier circuit, a power stage, and a ramp waveform generator circuit. The switching frequency will be adjustable, with a maximum goal of 20MHz
    corecore