58,441 research outputs found

    An optimized method towards formal verification of mixed signals using differential fed neural network over FFNN

    Get PDF
    Today, the semiconductor industries are rapidly usinganalog and mixed signals to achieve cost-effective solutions on a System on Chip (SoC) design.  The SoC device is a part of analog, digital and essential mixed-signal models/circuits merged on a semiconductor device, which provides the platform to build modern retail/consumer electronics appliances with smart technology. In order to evaluate the mixed signals, the conventional approaches are not effective with respect to its performance, time and manufacturing cost. Thus, the recent researches were much interested in formal verification technique as it provides the evidence of conscious algorithms in a system. The demand for formal verification in the SoC designs in the context of software and hardware platform is high because of its cost and accuracy. Thus, the paper introduces atechnique of formal verification for mixed signals by using training models of the Differential fed neural network (DFNN) over feedforward neural network (FFNN). The formal verification is performed through equivalence checking by using recently adopted designs as reference designs. The outcomes of the verification techniques suggests that DFNN based technique improves the training accuracy and optimizes the hardware resources like area, power than the FFNN based technique

    Timing verification of dynamically reconfigurable logic for Xilinx Virtex FPGA series

    Get PDF
    This paper reports on a method for extending existing VHDL design and verification software available for the Xilinx Virtex series of FPGAs. It allows the designer to apply standard hardware design and verification tools to the design of dynamically reconfigurable logic (DRL). The technique involves the conversion of a dynamic design into multiple static designs, suitable for input to standard synthesis and APR tools. For timing and functional verification after APR, the sections of the design can then be recombined into a single dynamic system. The technique has been automated by extending an existing DRL design tool named DCSTech, which is part of the Dynamic Circuit Switching (DCS) CAD framework. The principles behind the tools are generic and should be readily extensible to other architectures and CAD toolsets. Implementation of the dynamic system involves the production of partial configuration bitstreams to load sections of circuitry. The process of creating such bitstreams, the final stage of our design flow, is summarized

    Functional Verification of Large-integers Circuits using a Cosimulation-based Approach

    Get PDF
    Cryptography and computational algebra designs are complex systems based on modular arithmetic and build on multi-level modules where bit-width is generally larger than 64-bit. Because of their particularity, such designs pose a real challenge for verification, in part because large-integer’s functions are not supported in actual hardware description languages (HDLs), therefore limiting the HDL testbench utility. In another hand, high-level verification approach proved its efficiency in the last decade over HDL testbench technique by raising the latter at a higher abstraction level. In this work, we propose a high-level platform to verify such designs, by leveraging the capabilities of a popular tool (Matlab/Simulink) to meet the requirements of a cycle accurate verification without bit-size restrictions and in multi-level inside the design architecture. The proposed high-level platform is augmented by an assertion-based verification to complete the verification coverage. The platform experimental results of the testcase provided good evidence of its performance and re-usability

    Concurrent Specification and Timing Analysis of Digital Hardware using SDL (extended version)

    Get PDF
    Digital hardware is treated as a collection of interacting parallel components. This permits the use of a standard formal technique for specification and analysis of circuit designs. The ANISEED method (Analysis In SDL Enhancing Electronic Design) is presented for specifying and analysing timing characteristics of hardware designs using SDL (Specification and Description Language). A signal carries a binary value and an optional time-stamp. Components and circuit designs are instances of block types in library packages. The library contains specifications of typical components in single/multi-bit and untimed/timed forms. Timing may be specified at an abstract, behavioural or structural level. Timing properties are investigated using an SDL simulator or validator. Consistency of temporal and functional aspects may be assessed between designs at different levels of detail. Timing characteristics of a design may also be inferred from validator traces. A variety of examples is used, ranging from a simple gate specification to realistic examples drawn from a standard hardware verification benchmark

    Accelerating Mixed-Abstraction SystemC Models on Multi-Core CPUs and GPUs

    Get PDF
    Functional verification is a critical part in the hardware design process cycle, and it contributes for nearly two-thirds of the overall development time. With increasing complexity of hardware designs and shrinking time-to-market constraints, the time and resources spent on functional verification has increased considerably. To mitigate the increasing cost of functional verification, research and academia have been engaged in proposing techniques for improving the simulation of hardware designs, which is a key technique used in the functional verification process. However, the proposed techniques for accelerating the simulation of hardware designs do not leverage the performance benefits offered by multiprocessors/multi-core and heterogeneous processors available today. With the growing ubiquity of powerful heterogeneous computing systems, which integrate multi-processor/multi-core systems with heterogeneous processors such as GPUs, it is important to utilize these computing systems to address the functional verification bottleneck. In this thesis, I propose a technique for accelerating SystemC simulations across multi-core CPUs and GPUs. In particular, I focus on accelerating simulation of SystemC models that are described at both the Register-Transfer Level (RTL) and Transaction Level (TL) abstractions. The main contributions of this thesis are: 1.) a methodology for accelerating the simulation of mixed abstraction SystemC models defined at the RTL and TL abstractions on multi-core CPUs and GPUs and 2.) An open-source static framework for parsing, analyzing, and performing source-to-source translation of identified portions of a SystemC model for execution on multi-core CPUs and GPUs

    Asynchronous Advanced Encryption Standard Hardware with Random Noise Injection for Improved Side-Channel Attack Resistance

    Get PDF
    This work presents the design, hardware implementation, and performance analysis of novel asynchronous AES (advanced encryption standard) Key Expander and Round Function, which offer increased side-channel attack (SCA) resistance. These designs are based on a delay-insensitive (DI) logic paradigm known as null convention logic (NCL), which supports useful properties for resisting SCAs including dual-rail encoding, clock-free operation, and monotonic transitions. Potential benefits include reduced and more uniform switching activities and reduced signal-to-noise (SNR) ratio. A novel method to further augment NCL AES hardware with random voltage scaling technique is also presented for additional security. Thereby, the proposed components leak significantly less side-channel information than conventional clocked approaches. To quantitatively verify such improvements, functional verification and WASSO (weighted average simultaneous switching output) analysis have been carried out on both conventional synchronous approach and the proposed NCL based approach using Mentor Graphics ModelSim and Xilinx simulation tools. Hardware implementation has been carried out on both designs exploiting a specified side-channel attack standard evaluation FPGA board, called SASEBO-GII, and the corresponding power waveforms for both designs have been collected. Along with the results of software simulations, we have analyzed the collected waveforms to validate the claims related to benefits of the proposed cryptohardware design approach
    • …
    corecore