1,189 research outputs found

    An improved C-DEEPSO algorithm for optimal active-reactive power dispatch in microgrids with electric vehicles

    Get PDF
    In the last years, our society's high energy demand has led to the proposal of novel ways of consuming and producing electricity. In this sense, many countries have encouraged micro generation, including the use of renewable sources such as solar irradiation and wind generation, or considering the insertion of electric vehicles as dispatchable units on the grid. This work addresses the Optimal active&-reactive power dispatch (OARPD) problem (a type of optimal power flow (OPF) task) in microgrids considering electric vehicles. We used the modified IEEE 57 and IEEE 118 bus-systems test scenarios, in which thermoelectric generators were replaced by renewable generators. In particular, under the IEEE 118 bus system, electric vehicles were integrated into the grid. To solve the OARDP problem, we proposed the use and improvement of the Canonical Differential Evolutionary Particle Swarm Optimization (C-DEEPSO) algorithm. For further refinement in the search space, C-DEEPSO relies on local search operators. The results indicated that the proposed improved C-DEEPSO was able to show generation savings (in terms ofmillions of dollars) acting as a dispatch controller against two algorithms based on swarm intelligence.European CommissionAgencia Estatal de InvestigaciĂłnComunidad de Madri

    Application-specific modified particle swarm optimization for energy resource scheduling considering vehicle-to-grid

    Get PDF
    This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value

    Single and Multiobjective Optimal Reactive Power Dispatch Based on Hybrid Artificial Physics–Particle Swarm Optimization

    Get PDF
    The optimal reactive power dispatch (ORPD) problem represents a noncontinuous, nonlinear, highly constrained optimization problem that has recently attracted wide research investigation. This paper presents a new hybridization technique for solving the ORPD problem based on the integration of particle swarm optimization (PSO) with artificial physics optimization (APO). This hybridized algorithm is tested and verified on the IEEE 30, IEEE 57, and IEEE 118 bus test systems to solve both single and multiobjective ORPD problems, considering three main aspects. These aspects include active power loss minimization, voltage deviation minimization, and voltage stability improvement. The results prove that the algorithm is effective and displays great consistency and robustness in solving both the single and multiobjective functions while improving the convergence performance of the PSO. It also shows superiority when compared with results obtained from previously reported literature for solving the ORPD problem

    Study of an Optimized Micro-Grid’s Operation with Electrical Vehicle-Based Hybridized Sustainable Algorithm

    Get PDF
    Recently, the expansion of energy communities has been aided by the lowering cost of storage technologies and the appearance of mechanisms for exchanging energy that is driven by economics. An amalgamation of different renewable energy sources, including solar, wind, geothermal, tidal, etc., is necessary to offer sustainable energy for smart cities. Furthermore, considering the induction of large-scale electric vehicles connected to the regional micro-grid, and causes of increase in the randomness and uncertainty of the load in a certain area, a solution that meets the community demands for electricity, heating, cooling, and transportation while using renewable energy is needed. This paper aims to define the impact of large-scale electric vehicles on the operation and management of the microgrid using a hybridized algorithm. First, with the use of the natural attributes of electric vehicles such as flexible loads, a large-scale electric vehicle response dispatch model is constructed. Second, three factors of micro-grid operation, management, and environmental pollution control costs with load fluctuation variance are discussed. Third, a hybrid gravitational search algorithm and random forest regression (GSA-RFR) approach is proposed to confirm the method’s authenticity and reliability. The constructed large-scale electric vehicle response dispatch model significantly improves the load smoothness of the micro-grid after the large-scale electric vehicles are connected and reduces the impact of the entire grid. The proposed hybridized optimization method was solved within 296.7 s, the time taken for electric vehicle users to charge from and discharge to the regional micro-grid, which improves the economy of the micro-grid, and realizes the effective management of the regional load. The weight coefficients λ1 and λ2 were found at 0.589 and 0.421, respectively. This study provides key findings and suggestions that can be useful to scholars and decisionmakers

    Decision support tool for Virtual Power Players: Hybrid Particle Swarm Optimization applied to Day-ahead Vehicle-To-Grid Scheduling

    Get PDF
    This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method

    Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems

    Get PDF
    Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed

    Optimisation, Optimal Control and Nonlinear Dynamics in Electrical Power, Energy Storage and Renewable Energy Systems

    Get PDF
    The electrical power system is undergoing a revolution enabled by advances in telecommunications, computer hardware and software, measurement, metering systems, IoT, and power electronics. Furthermore, the increasing integration of intermittent renewable energy sources, energy storage devices, and electric vehicles and the drive for energy efficiency have pushed power systems to modernise and adopt new technologies. The resulting smart grid is characterised, in part, by a bi-directional flow of energy and information. The evolution of the power grid, as well as its interconnection with energy storage systems and renewable energy sources, has created new opportunities for optimising not only their techno-economic aspects at the planning stages but also their control and operation. However, new challenges emerge in the optimization of these systems due to their complexity and nonlinear dynamic behaviour as well as the uncertainties involved.This volume is a selection of 20 papers carefully made by the editors from the MDPI topic “Optimisation, Optimal Control and Nonlinear Dynamics in Electrical Power, Energy Storage and Renewable Energy Systems”, which was closed in April 2022. The selected papers address the above challenges and exemplify the significant benefits that optimisation and nonlinear control techniques can bring to modern power and energy systems

    A review of optimal operation of microgrids

    Get PDF
    The term microgrid refers to small-scale power grid that can operate autonomously or in concurrence with the area’s main electrical grid. The intermittent characteristic of DGs which defies the power quality and voltage manifests the requirement for new planning and operation approaches for microgrids. Consequently, conventional optimization methods in new power systems have been critically biased all through the previous decade. One of the main technological and inexpensive tools in this regard is the optimal generation scheduling of microgrid. As a primary optimization tool in the planning and operation fields, optimal operation has an undeniable part in the power system. This paper reviews and evaluates the optimal operation approaches mostly related to microgrids. In this work, the foremost optimal generation scheduling approaches are compared in terms of their objective functions, techniques and constraints. To conclude, a few fundamental challenges occurring from the latest optimal generation scheduling techniques in microgrids are addressed
    • …
    corecore