468 research outputs found

    Emergency Data Transmission Mechanism in VANETs using Improved Restricted Greedy Forwarding (IRGF) Scheme

    Get PDF
    One of the most critical tasks in Vehicular Ad-hoc Networks (VANETs) is broadcasting Emergency Messages (EMs) at considerable data delivery rates (DDRs). The enhanced spider-web-like Transmission Mechanism for Emergency Data (TMED) is based on request spiders and authenticated spiders to create the shortest route path between the source vehicle and target vehicles. However, the adjacent allocation is based on the DDR only and it is not clear whether each adjacent vehicle is honest or not. Hence, in this article, the Improved Restricted Greedy Forwarding (IRGF) scheme is proposed for adjacent allocation with the help of trust computation in TMED. The trust and reputation score value of each adjacent vehicle is estimated based on successfully broadcast emergency data. The vehicles’ position, velocity, direction, density, and the reputation score, are fed to a fuzzy logic (FL) scheme, which selects the most trusted adjacent node as the forwarding node for broadcasting the EM to the destination vehicles. Finally, the simulation results illustrate the TMED-IRGF model’s efficiency compared to state-of-the-art models in terms of different network metrics

    SDDV: scalable data dissemination in vehicular ad hoc networks

    Get PDF
    An important challenge in the domain of vehicular ad hoc networks (VANET) is the scalability of data dissemination. Under dense traffic conditions, the large number of communicating vehicles can easily result in a congested wireless channel. In that situation, delays and packet losses increase to a level where the VANET cannot be applied for road safety applications anymore. This paper introduces scalable data dissemination in vehicular ad hoc networks (SDDV), a holistic solution to this problem. It is composed of several techniques spread across the different layers of the protocol stack. Simulation results are presented that illustrate the severity of the scalability problem when applying common state-of-the-art techniques and parameters. Starting from such a baseline solution, optimization techniques are gradually added to SDDV until the scalability problem is entirely solved. Besides the performance evaluation based on simulations, the paper ends with an evaluation of the final SDDV configuration on real hardware. Experiments including 110 nodes are performed on the iMinds w-iLab.t wireless lab. The results of these experiments confirm the results obtained in the corresponding simulations

    Supporting Protocols for Structuring and Intelligent Information Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    The goal of this dissertation is the presentation of supporting protocols for structuring and intelligent data dissemination in vehicular ad hoc networks (VANETs). The protocols are intended to first introduce a structure in VANETs, and thus promote the spatial reuse of network resources. Segmenting a flat VANET in multiple cluster structures allows for more efficient use of the available bandwidth, which can effectively increase the capacity of the network. The cluster structures can also improve the scalability of the underlying communication protocols. The structuring and maintenance of the network introduces additional overhead. The aim is to provide a mechanism for creating stable cluster structures in VANETs, and to minimize this associated overhead. Further a hybrid overlay-based geocast protocol for VANETs is presented. The protocol utilizes a backbone overlay virtual infrastructure on top of the physical network to provide geocast support, which is crucial for intervehicle communications since many applications provide group-oriented and location-oriented services. The final contribution is a structureless information dissemination scheme which creates a layered view of road conditions with a diminishing resolution as the viewing distance increases. Namely, the scheme first provides a high-detail local view of a given vehicle\u27s neighbors and its immediate neighbors, which is further extended when information dissemination is employed. Each vehicle gets aggregated information for road conditions beyond this extended local view. The scheme allows for the preservation of unique reports within aggregated frames, such that safety critical notifications are kept in high detail, all for the benefit of the driver\u27s improved decision making during emergency scenarios

    Quality of service aware data dissemination in vehicular Ad Hoc networks

    Full text link
    Des systèmes de transport intelligents (STI) seront éventuellement fournis dans un proche avenir pour la sécurité et le confort des personnes lors de leurs déplacements sur les routes. Les réseaux ad-hoc véhiculaires (VANETs) représentent l'élément clé des STI. Les VANETs sont formés par des véhicules qui communiquent entre eux et avec l'infrastructure. En effet, les véhicules pourront échanger des messages qui comprennent, par exemple, des informations sur la circulation routière, les situations d'urgence et les divertissements. En particulier, les messages d'urgence sont diffusés par des véhicules en cas d'urgence (p.ex. un accident de voiture); afin de permettre aux conducteurs de réagir à temps (p.ex., ralentir), les messages d'urgence doivent être diffusés de manière fiable dans un délai très court. Dans les VANETs, il existe plusieurs facteurs, tels que le canal à pertes, les terminaux cachés, les interférences et la bande passante limitée, qui compliquent énormément la satisfaction des exigences de fiabilité et de délai des messages d'urgence. Dans cette thèse, en guise de première contribution, nous proposons un schéma de diffusion efficace à plusieurs sauts, appelé Dynamic Partitioning Scheme (DPS), pour diffuser les messages d'urgence. DPS calcule les tailles de partitions dynamiques et le calendrier de transmission pour chaque partition; à l'intérieur de la zone arrière de l'expéditeur, les partitions sont calculées de sorte qu'en moyenne chaque partition contient au moins un seul véhicule; l'objectif est de s'assurer que seul un véhicule dans la partition la plus éloignée (de l'expéditeur) est utilisé pour diffuser le message, jusqu'au saut suivant; ceci donne lieu à un délai d'un saut plus court. DPS assure une diffusion rapide des messages d'urgence. En outre, un nouveau mécanisme d'établissement de liaison, qui utilise des tonalités occupées, est proposé pour résoudre le problème du problème de terminal caché. Dans les VANETs, la Multidiffusion, c'est-à-dire la transmission d'un message d'une source à un nombre limité de véhicules connus en tant que destinations, est très importante. Par rapport à la diffusion unique, avec Multidiffusion, la source peut simultanément prendre en charge plusieurs destinations, via une arborescence de multidiffusion, ce qui permet d'économiser de la bande passante et de réduire la congestion du réseau. Cependant, puisque les VANETs ont une topologie dynamique, le maintien de la connectivité de l'arbre de multidiffusion est un problème majeur. Comme deuxième contribution, nous proposons deux approches pour modéliser l'utilisation totale de bande passante d'une arborescence de multidiffusion: (i) la première approche considère le nombre de segments de route impliqués dans l'arbre de multidiffusion et (ii) la seconde approche considère le nombre d'intersections relais dans l'arbre de multidiffusion. Une heuristique est proposée pour chaque approche. Pour assurer la qualité de service de l'arbre de multidiffusion, des procédures efficaces sont proposées pour le suivi des destinations et la surveillance de la qualité de service des segments de route. Comme troisième contribution, nous étudions le problème de la congestion causée par le routage du trafic de données dans les VANETs. Nous proposons (1) une approche de routage basée sur l’infonuagique qui, contrairement aux approches existantes, prend en compte les chemins de routage existants qui relaient déjà les données dans les VANETs. Les nouvelles demandes de routage sont traitées de sorte qu'aucun segment de route ne soit surchargé par plusieurs chemins de routage croisés. Au lieu d'acheminer les données en utilisant des chemins de routage sur un nombre limité de segments de route, notre approche équilibre la charge des données en utilisant des chemins de routage sur l'ensemble des tronçons routiers urbains, dans le but d'empêcher, dans la mesure du possible, les congestions locales dans les VANETs; et (2) une approche basée sur le réseau défini par logiciel (SDN) pour surveiller la connectivité VANET en temps réel et les délais de transmission sur chaque segment de route. Les données de surveillance sont utilisées en entrée de l'approche de routage.Intelligent Transportation Systems (ITS) will be eventually provided in the near future for both safety and comfort of people during their travel on the roads. Vehicular ad-hoc Networks (VANETs), represent the key component of ITS. VANETs consist of vehicles that communicate with each other and with the infrastructure. Indeed, vehicles will be able to exchange messages that include, for example, information about road traffic, emergency situations, and entertainment. Particularly, emergency messages are broadcasted by vehicles in case of an emergency (e.g., car accident); in order to allow drivers to react in time (e.g., slow down), emergency messages must be reliably disseminated with very short delay. In VANETs, there are several factors, such as lossy channel, hidden terminals, interferences and scarce bandwidth, which make satisfying reliability and delay requirements of emergency messages very challenging. In this thesis, as the first contribution, we propose a reliable time-efficient and multi-hop broadcasting scheme, called Dynamic Partitioning Scheme (DPS), to disseminate emergency messages. DPS computes dynamic partition sizes and the transmission schedule for each partition; inside the back area of the sender, the partitions are computed such that in average each partition contains at least a single vehicle; the objective is to ensure that only a vehicle in the farthest partition (from the sender) is used to disseminate the message, to next hop, resulting in shorter one hop delay. DPS ensures fast dissemination of emergency messages. Moreover, a new handshaking mechanism, that uses busy tones, is proposed to solve the problem of hidden terminal problem. In VANETs, Multicasting, i.e. delivering a message from a source to a limited known number of vehicles as destinations, is very important. Compared to Unicasting, with Multicasting, the source can simultaneously support multiple destinations, via a multicast tree, saving bandwidth and reducing overall communication congestion. However, since VANETs have a dynamic topology, maintaining the connectivity of the multicast tree is a major issue. As the second contribution, we propose two approaches to model total bandwidth usage of a multicast tree: (i) the first approach considers the number of road segments involved in the multicast tree and (ii) the second approach considers the number of relaying intersections involved in the multicast tree. A heuristic is proposed for each approach. To ensure QoS of the multicasting tree, efficient procedures are proposed for tracking destinations and monitoring QoS of road segments. As the third contribution, we study the problem of network congestion in routing data traffic in VANETs. We propose (1) a Cloud-based routing approach that, in opposition to existing approaches, takes into account existing routing paths which are already relaying data in VANETs. New routing requests are processed such that no road segment gets overloaded by multiple crossing routing paths. Instead of routing over a limited set of road segments, our approach balances the load of communication paths over the whole urban road segments, with the objective to prevent, whenever possible, local congestions in VANETs; and (2) a Software Defined Networking (SDN) based approach to monitor real-time VANETs connectivity and transmission delays on each road segment. The monitoring data is used as input to the routing approach

    CMD: A Multi-Channel Coordination Scheme for Emergency Message Dissemination in IEEE 1609.4

    Full text link
    In the IEEE 1609.4 legacy standard for multi-channel communications in vehicular ad hoc networks(VANETs), the control channel (CCH) is dedicated to broadcast safety messages while the service channels (SCH's) are dedicated to transmit infotainment service content. However, the SCH can be used as an alternative to transmit high priority safety messages in the event that they are invoked during the service channel interval (SCHI). This implies that there is a need to transmit safety messages across multiple available utilized channels to ensure that all vehicles receive the safety message. Transmission across multiple SCH's using the legacy IEEE 1609.4 requires multiple channel switching and therefore introduces further end-to-end delays. Given that safety messaging is a life critical application, it is important that optimal end-to-end delay performance is derived in multi-channel VANET scenarios to ensure reliable safety message dissemination. To tackle this challenge, three primary contributions are in this article: first, a channel coordinator selection approach based on the least average separation distance (LAD) to the vehicles that expect to tune to other SCH's and operates during the control channel interval (CCHI) is proposed. Second, a model to determine the optimal time intervals in which CMD operates during the CCHI is proposed. Third, a contention back-off mechanism for safety message transmission during the SCHI is proposed. Computer simulations and mathematical analysis show that CMD performs better than the legacy IEEE 1609.4 and a selected state-of-the-art multi-channel message dissemination schemes in terms of end-to-end delay and packet reception ratio.Comment: 15 pages, 10 figures, 7 table

    A distributed position-based protocol for emergency messages broadcasting in vehicular ad hoc networks

    Get PDF
    Vehicular ad hoc networks (VANETs) can help reduce traffic accidents through broadcasting emergency messages among vehicles in advance. However, it is a great challenge to timely deliver the emergency messages to the right vehicles which are interested in them. Some protocols require to collect nearby real-time information before broadcasting a message, which may result in an increased delivery latency. In this paper, we proposed an improved position-based protocol to disseminate emergency messages among a large scale vehicle networks. Specifically, defined by the proposed protocol, messages are only broadcasted along their regions of interest, and a rebroadcast of a message depends on the information including in the message it has received. The simulation results demonstrate that the proposed protocol can reduce unnecessary rebroadcasts considerably, and the collisions of broadcast can be effectively mitigated

    Requirement analysis for building practical accident warning systems based on vehicular ad-hoc networks

    Get PDF
    An Accident Warning System (AWS) is a safety application that provides collision avoidance notifications for next generation vehicles whilst Vehicular Ad-hoc Networks (VANETs) provide the communication functionality to exchange these notifi- cations. Despite much previous research, there is little agreement on the requirements for accident warning systems. In order to build a practical warning system, it is important to ascertain the system requirements, information to be exchanged, and protocols needed for communication between vehicles. This paper presents a practical model of an accident warning system by stipulating the requirements in a realistic manner and thoroughly reviewing previous proposals with a view to identify gaps in this area

    Using topology and neighbor information to overcome adverse vehicle density conditions

    Full text link
    Vehicular networks supporting cooperative driving on the road have attracted much attention due to the plethora of new possibilities they offer to modern Intelligent Transportation Systems. However, research works regarding vehicular networks usually obviate assessing their proposals in scenarios including adverse vehicle densities, i.e., density values that significantly differ from the average values, despite such densities can be quite common in real urban environments (e.g. traffic jams). In this paper, we study the effect of these hostile conditions on the performance of different schemes providing warning message dissemination. The goal of these schemes is to maximize message delivery effectiveness, something difficult to achieve in adverse density scenarios. In addition, we propose the Neighbor Store and Forward (NSF) scheme, designed to be used under low density conditions, and the Nearest Junction Located (NJL) scheme, specially developed for high density conditions. Simulation results demonstrate that our proposals are able to outperform existing warning message dissemination schemes in urban environments under adverse vehicle density conditions. In particular, NSF reduces the warning notification time in low vehicle density scenarios, while increasing up to 23.3% the percentage of informed vehicles. As for high vehicle density conditions, NJL is able to inform the same percentage of vehicles than other existing approaches, while reducing the number of messages up to 46.73%This work was partially supported by the Ministerio de Ciencia e Innovacion, Spain, under Grant TIN2011-27543-C03-01, by the Fundacion Universitaria Antonio Gargallo and the Obra Social de Ibercaja, under Grant 2013/B010, as well as the Government of Aragon and the European Social Fund (T91 Research Group).Sanguesa, JA.; Fogue, M.; Garrido, P.; Martinez, FJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM. (2014). Using topology and neighbor information to overcome adverse vehicle density conditions. Transportation Research Part C: Emerging Technologies. 42:1-13. https://doi.org/10.1016/j.trc.2014.02.010S1134

    Game-theoretical design of an adaptive distributed dissemination protocol for VANETs

    Get PDF
    Road safety applications envisaged for Vehicular Ad Hoc Networks (VANETs) depend largely on the dissemination of warning messages to deliver information to concerned vehicles. The intended applications, as well as some inherent VANET characteristics, make data dissemination an essential service and a challenging task in this kind of networks. This work lays out a decentralized stochastic solution for the data dissemination problem through two game-theoretical mechanisms. Given the non-stationarity induced by a highly dynamic topology, diverse network densities, and intermittent connectivity, a solution for the formulated game requires an adaptive procedure able to exploit the environment changes. Extensive simulations reveal that our proposal excels in terms of number of transmissions, lower end-to-end delay and reduced overhead while maintaining high delivery ratio, compared to other proposalsPeer ReviewedPostprint (published version
    • …
    corecore