9 research outputs found

    Models predicting the performance of IC component or PCB channel during electromagnetic interference

    Get PDF
    This dissertation is composed of three papers, which cover the prediction of the characteristics of jitter due to crosstalk and due to simultaneous switching noise, and covers susceptibility of delay locked loop (DLL) to electromagnetic interference. In the first paper, an improved tail-fit de-convolution method is proposed for characterizing the impact of deterministic jitter in the presence of random jitter. A Wiener filter de-convolution method is also presented for extracting the characteristics of crosstalk induced jitter from measurements of total jitter made when the crosstalk sources were and were not present. The proposed techniques are shown to work well both in simulations and in measurements of a high-speed link. In the second paper, methods are developed to predict the statistical distribution of timing jitter due to dynamic currents drawn by an integrated circuit (IC) and the resulting power supply noise on the PCB. Distribution of dynamic currents is found through vectorless methods. Results demonstrate the approach can rapidly determine the average and standard deviation of the power supply noise voltage and the peak jitter within 5~15% error, which is more than sufficient for predicting the performance impact on integrated circuits. In the third paper, a model is developed to predict the susceptibility of a DLL to electromagnetic noise on the power supply. With the proposed analytical noise transfer function, peak to peak jitter and cycle to cycle jitter at the DLL output can be estimated, which can be use to predict when soft failures will occur and to better understand how to fix these failures. Simulation and measurement results demonstrate the accuracy of the DLL delay model. --Abstract, page iv

    Understanding of On-Chip Power Supply Noise: Suppression Methodologies and Challenges

    Get PDF
    The on-chip activities of any modern IC are always inhibited due to the occurrence of power supply noise (PSN) in the chip power line. From many decades, researchers are pondering on what are the major issue of this PSN occurrence and how it can be suppressed without interfering the actual chip functioning. In the course of time, it is found that the uncontrolled triggering of the on-chip system clock and the unguarded on-chip power line is instigating the two major factors for the occurrence of PSN i.e., i(t) → instantaneous current and di/dt → current ramp or the rate of change of current over time. Both i(t) and di/dt are also the sub-factors to rise the PSN components like resistive noise and inductive noise respectively. In this chapter, we light upon the occurrence of resistive and inductive noise as well as depict their individual impact on the PSN occurrences. There is also discussion on how PSN is suppressed over the years in spite of facing challenges in the execution of suppression techniques. This chapter even concludes on the suitable ways for mitigating PSN in the contemporary era of delivering complex on-chip features

    Statistical static timing analysis considering the impact of power supply noise in VLSI circuits

    Get PDF
    As semiconductor technology is scaled and voltage level is reduced, the impact of the variation in power supply has become very significant in predicting the realistic worst-case delays in integrated circuits. The analysis of power supply noise is inevitable because high correlations exist between supply voltage and delay. Supply noise analysis has often used a vector-based timing analysis approach. Finding a set of test vectors in vector-based approaches, however, is very expensive, particularly during the design phase, and becomes intractable for larger circuits in DSM technology. In this work, two novel vectorless approaches are described such that increases in circuit delay, because of power supply noise, can be efficiently, quickly estimated. Experimental results on ISCAS89 circuits reveal the accuracy and efficiency of my approaches: in s38417 benchmark circuits, errors on circuit delay distributions are less than 2%, and both of my approaches are 67 times faster than the traditional vector-based approach. Also, the results show the importance of considering care-bits, which sensitize the longest paths during the power supply noise analysis

    Statistical static timing analysis considering process variations and crosstalk

    Get PDF
    Increasing relative semiconductor process variations are making the prediction of realistic worst-case integrated circuit delay or sign-off yield more difficult. As process geometries shrink, intra-die variations have become dominant and it is imperative to model them to obtain accurate timing analysis results. In addition, intra-die process variations are spatially correlated due to pattern dependencies in the manufacturing process. Any statistical static timing analysis (SSTA) tool is incomplete without a model for signal crosstalk, as critical path delays can increase or decrease depending on the switching of capacitively coupled nets. The coupled signal timing in turn depends on the process variations. This work describes an SSTA tool that models signal crosstalk and spatial correlation in intra-die process variations, along with gradients and inter-die variations

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Test and Diagnosis of Integrated Circuits

    Get PDF
    The ever-increasing growth of the semiconductor market results in an increasing complexity of digital circuits. Smaller, faster, cheaper and low-power consumption are the main challenges in semiconductor industry. The reduction of transistor size and the latest packaging technology (i.e., System-On-a-Chip, System-In-Package, Trough Silicon Via 3D Integrated Circuits) allows the semiconductor industry to satisfy the latest challenges. Although producing such advanced circuits can benefit users, the manufacturing process is becoming finer and denser, making chips more prone to defects.The work presented in the HDR manuscript addresses the challenges of test and diagnosis of integrated circuits. It covers:- Power aware test;- Test of Low Power Devices;- Fault Diagnosis of digital circuits
    corecore