2,823 research outputs found

    On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations

    Get PDF
    We construct Miura transformations mapping the scalar spectral problems of the integrable lattice equations belonging to the Adler-Bobenko-Suris (ABS) list into the discrete Schr\"odinger spectral problem associated with Volterra-type equations. We show that the ABS equations correspond to B\"acklund transformations for some particular cases of the discrete Krichever-Novikov equation found by Yamilov (YdKN equation). This enables us to construct new generalized symmetries for the ABS equations. The same can be said about the generalizations of the ABS equations introduced by Tongas, Tsoubelis and Xenitidis. All of them generate B\"acklund transformations for the YdKN equation. The higher order generalized symmetries we construct in the present paper confirm their integrability.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Poisson integrators

    Full text link
    An overview of Hamiltonian systems with noncanonical Poisson structures is given. Examples of bi-Hamiltonian ode's, pde's and lattice equations are presented. Numerical integrators using generating functions, Hamiltonian splitting, symplectic Runge-Kutta methods are discussed for Lie-Poisson systems and Hamiltonian systems with a general Poisson structure. Nambu-Poisson systems and the discrete gradient methods are also presented.Comment: 30 page

    Lie point symmetries of differential--difference equations

    Full text link
    We present an algorithm for determining the Lie point symmetries of differential equations on fixed non transforming lattices, i.e. equations involving both continuous and discrete independent variables. The symmetries of a specific integrable discretization of the Krichever-Novikov equation, the Toda lattice and Toda field theory are presented as examples of the general method.Comment: 17 pages, 1 figur

    Non-standard discretization of biological models

    Get PDF
    We consider certain types of discretization schemes for differential equations with quadratic nonlinearities, which were introduced by Kahan, and considered in a broader setting by Mickens. These methods have the property that they preserve important structural features of the original systems, such as the behaviour of solutions near to fixed points, and also, where appropriate (e.g. for certain mechanical systems), the property of being volume-preserving, or preserving a symplectic/Poisson structure. Here we focus on the application of Kahan's method to models of biological systems, in particular to reaction kinetics governed by the Law of Mass Action, and present a general approach to birational discretization, which is applied to population dynamics of Lotka-Volterra type

    Einstein-Cartan theory as a theory of defects in space-time

    Full text link
    The Einstein-Cartan theory of gravitation and the classical theory of defects in an elastic medium are presented and compared. The former is an extension of general relativity and refers to four-dimensional space-time, while we introduce the latter as a description of the equilibrium state of a three-dimensional continuum. Despite these important differences, an analogy is built on their common geometrical foundations, and it is shown that a space-time with curvature and torsion can be considered as a state of a four-dimensional continuum containing defects. This formal analogy is useful for illustrating the geometrical concept of torsion by applying it to concrete physical problems. Moreover, the presentation of these theories using a common geometrical basis allows a deeper understanding of their foundations.Comment: 18 pages, 7 EPS figures, RevTeX4, to appear in the American Journal of Physics, revised version with typos correcte
    corecore