23,934 research outputs found

    A hybridwind speed forecasting system based on a 'decomposition and ensemble' strategy and fuzzy time series

    Full text link
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. Accurate and stable wind speed forecasting is of critical importance in the wind power industry and has measurable influence on power-system management and the stability of market economics. However, most traditional wind speed forecasting models require a large amount of historical data and face restrictions due to assumptions, such as normality postulates. Additionally, any data volatility leads to increased forecasting instability. Therefore, in this paper, a hybrid forecasting system, which combines the 'decomposition and ensemble' strategy and fuzzy time series forecasting algorithm, is proposed that comprises two modules-data pre-processing and forecasting. Moreover, the statistical model, artificial neural network, and Support Vector Regression model are employed to compare with the proposed hybrid system, which is proven to be very effective in forecasting wind speed data affected by noise and instability. The results of these comparisons demonstrate that the hybrid forecasting system can improve the forecasting accuracy and stability significantly, and supervised discretization methods outperform the unsupervised methods for fuzzy time series in most cases

    Forecasting seasonal time series with computational intelligence: on recent methods and the potential of their combinations

    Get PDF
    Accurate time series forecasting is a key issue to support individual and or- ganizational decision making. In this paper, we introduce novel methods for multi-step seasonal time series forecasting. All the presented methods stem from computational intelligence techniques: evolutionary artificial neu- ral networks, support vector machines and genuine linguistic fuzzy rules. Performance of the suggested methods is experimentally justified on sea- sonal time series from distinct domains on three forecasting horizons. The most important contribution is the introduction of a new hybrid combination using linguistic fuzzy rules and the other computational intelligence methods. This hybrid combination presents competitive forecasts, when compared with the popular ARIMA method. Moreover, such hybrid model is more easy to interpret by decision-makers when modeling trended series.The research was supported by the European Regional Development Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070). Furthermore, we gratefully acknowledge partial support of the project KON- TAKT II - LH12229 of MSˇMT CˇR

    Electric Load Forecasting Using Long Short-term Memory Algorithm

    Get PDF
    Abstract Power system load forecasting refers to the study or uses a mathematical method to process past and future loads systematically, taking into account important system operating characteristics, capacity expansion decisions, natural conditions, and social impacts, to meet specific accuracy requirements. Dependence of this, determine the load value at a specific moment in the future. Improving the level of load forecasting technology is conducive to the planned power management, which is conducive to rationally arranging the grid operation mode and unit maintenance plan, and is conducive to formulating reasonable power supply construction plans and facilitating power improvement, and improve the economic and social benefits of the system. At present, there are many methods for load forecasting. The newer algorithms mainly include the neural network method, time series method, regression analysis method, support vector machine method, and fuzzy prediction method. However, most of them do not apply to long-term time-series predictions, and as a result, the prediction accuracy for long-term power grids does not perform well. This thesis describes the design of an algorithm that is used to predict the load in a long time-series. Predict the load is significant and necessary for a dynamic electrical network. Improved the forecasting algorithm can save a ton of the cost of the load. In this paper, we propose a load forecasting model using long short-term memory(LSTM). The proposed implementation of LSTM match with the time-series dataset very well, which can improve the accuracy of convergence of the training process. We experiment with the difference time-step to expedites the convergence of the training process. It is found that all cases achieve significant different forecasting accuracy while forecasting the difference timesteps. Keywords—Load forecasting, long short-term memory, micro-gri

    Prediction in Photovoltaic Power by Neural Networks

    Get PDF
    The ability to forecast the power produced by renewable energy plants in the short and middle term is a key issue to allow a high-level penetration of the distributed generation into the grid infrastructure. Forecasting energy production is mandatory for dispatching and distribution issues, at the transmission system operator level, as well as the electrical distributor and power system operator levels. In this paper, we present three techniques based on neural and fuzzy neural networks, namely the radial basis function, the adaptive neuro-fuzzy inference system and the higher-order neuro-fuzzy inference system, which are well suited to predict data sequences stemming from real-world applications. The preliminary results concerning the prediction of the power generated by a large-scale photovoltaic plant in Italy confirm the reliability and accuracy of the proposed approaches

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    Forecasting of financial data: a novel fuzzy logic neural network based on error-correction concept and statistics

    Get PDF
    First, this paper investigates the effect of good and bad news on volatility in the BUX return time series using asymmetric ARCH models. Then, the accuracy of forecasting models based on statistical (stochastic), machine learning methods, and soft/granular RBF network is investigated. To forecast the high-frequency financial data, we apply statistical ARMA and asymmetric GARCH-class models. A novel RBF network architecture is proposed based on incorporation of an error-correction mechanism, which improves forecasting ability of feed-forward neural networks. These proposed modelling approaches and SVM models are applied to predict the high-frequency time series of the BUX stock index. We found that it is possible to enhance forecast accuracy and achieve significant risk reduction in managerial decision making by applying intelligent forecasting models based on latest information technologies. On the other hand, we showed that statistical GARCH-class models can identify the presence of leverage effects, and react to the good and bad news.Web of Science421049
    corecore