67 research outputs found

    The Dikin-Karmarkar Principle for Steepest Descent

    Get PDF
    This work was also published as a Rice University thesis/dissertation: http://hdl.handle.net/1911/16565Steepest feasible descent methods for inequality constrained optimization problems have commonly been plagued by short steps. The consequence of taking short steps is slow convergence to non-stationary points (zigzagging). In linear programming, both the projective algorithm of Karmarkar (1984) and its affined-variant, originally proposed by Dikin (1967), can be viewed as steepest feasible descent methods. However, both of these algorithms have been demonstrated to be effective and seem to have overcome the problem of short steps. These algorithms share a common norm. It is this choice of norm, in the context of steepest feasible descent, that we refer to as the Dikin-Karmarkar Principle. This research develops mathematical theory to quantify the short step behavior of Euclidean norm steepest feasible descent methods and the avoidance of short steps for steepest feasible descent with respect to the Dikin-Karmarkar norm. While the theory is developed for linear programming problems with only nonnegativity constraints on the variables. Our numerical experimentation demonstrates that this behavior occurs for the more general linear program with equality constraints added. Our numerical results also suggest that taking longer steps is not sufficient to ensure the efficiency of a steepest feasible descent algorithm. The uniform way in which the Dikin-Karmarkar norm treats every boundary is important in obtaining a satisfactory convergence

    An analog of Karmarkar's algorithm for inequality constrained linear programs, with a "new" class of projective transformations for centering a polytope

    Get PDF
    Bibliography: p. 12.Research supported in part by ONR contract N00014-87-K-0212.by Robert M. Freund

    Projective transformations for interior-point algorithms, and a superlinearly convergent algorithm for the w-center problem

    Get PDF
    Includes bibliographical references.Robert M. Freund

    A dual version of Tardos's algorithm for linear programming

    Get PDF
    Bibliography: p. 11.by James B. Orlin

    A Variable Metric Variant of the Karmarkar Algorithm for Linear Programming

    Get PDF
    The most time-consuming part of the Karmarkar algorithm for linear programming is the projection of a vector onto the nullspace of a matrix that changes at each iteration. We present a variant of the Karmarkar algorithm that uses standard variable-metric techniques in an innovative way to approximate this projection. In limited tests, this modification greatly reduces the number of matrix factorizations needed for the solution of linear programming problems

    On the convergence of the affine-scaling algorithm

    Get PDF
    Cover title.Includes bibliographical references (p. 20-22).Research partially supported by the National Science Foundation. NSF-ECS-8519058 Research partially supported by the U.S. Army Research Office. DAAL03-86-K-0171 Research partially supported by the Science and Engineering Research Board of McMaster University.by Paul Tseng and Zhi-Quan Luo

    Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function

    Get PDF
    Includes bibliographical references (p. 28-29).by Robert M. Freund

    Theoretical Efficiency of A Shifted Barrier Function Algorithm for Linear Programming

    Get PDF
    This paper examines the theoretical efficiency of solving a standard-form linear program by solving a sequence of shifted-barrier problems of the form minimize cTx - n (xj + ehj) j.,1 x s.t. Ax = b , x + e h > , for a given and fixed shift vector h > 0, and for a sequence of values of > 0 that converges to zero. The resulting sequence of solutions to the shifted barrier problems will converge to a solution to the standard form linear program. The advantage of using the shiftedbarrier approach is that a starting feasible solution is unnecessary, and there is no need for a Phase I-Phase II approach to solving the linear program, either directly or through the addition of an artificial variable. Furthermore, the algorithm can be initiated with a "warm start," i.e., an initial guess of a primal solution x that need not be feasible. The number of iterations needed to solve the linear program to a desired level of accuracy will depend on a measure of how close the initial solution x is to being feasible. The number of iterations will also depend on the judicious choice of the shift vector h . If an approximate center of the dual feasible region is known, then h can be chosen so that the guaranteed fractional decrease in e at each iteration is (1 - 1/(6 i)) , which contributes a factor of 6 ii to the number of iterations needed to solve the problem. The paper also analyzes the complexity of computing an approximate center of the dual feasible region from a "warm start," i.e., an initial (possibly infeasible) guess ir of a solution to the center problem of the dual. Key Words: linear program, interior-point algorithm, center, barrier function, shifted-barrier function, Newton step
    • …
    corecore