7,422 research outputs found

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Dictionary-based Tensor Canonical Polyadic Decomposition

    Full text link
    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images

    The condition number of join decompositions

    Full text link
    The join set of a finite collection of smooth embedded submanifolds of a mutual vector space is defined as their Minkowski sum. Join decompositions generalize some ubiquitous decompositions in multilinear algebra, namely tensor rank, Waring, partially symmetric rank and block term decompositions. This paper examines the numerical sensitivity of join decompositions to perturbations; specifically, we consider the condition number for general join decompositions. It is characterized as a distance to a set of ill-posed points in a supplementary product of Grassmannians. We prove that this condition number can be computed efficiently as the smallest singular value of an auxiliary matrix. For some special join sets, we characterized the behavior of sequences in the join set converging to the latter's boundary points. Finally, we specialize our discussion to the tensor rank and Waring decompositions and provide several numerical experiments confirming the key results

    Renormalization of tensor-network states

    Full text link
    We have discussed the tensor-network representation of classical statistical or interacting quantum lattice models, and given a comprehensive introduction to the numerical methods we recently proposed for studying the tensor-network states/models in two dimensions. A second renormalization scheme is introduced to take into account the environment contribution in the calculation of the partition function of classical tensor network models or the expectation values of quantum tensor network states. It improves significantly the accuracy of the coarse grained tensor renormalization group method. In the study of the quantum tensor-network states, we point out that the renormalization effect of the environment can be efficiently and accurately described by the bond vector. This, combined with the imaginary time evolution of the wavefunction, provides an accurate projection method to determine the tensor-network wavfunction. It reduces significantly the truncation error and enable a tensor-network state with a large bond dimension, which is difficult to be accessed by other methods, to be accurately determined.Comment: 18 pages 23 figures, minor changes, references adde

    Tensor decomposition with generalized lasso penalties

    Full text link
    We present an approach for penalized tensor decomposition (PTD) that estimates smoothly varying latent factors in multi-way data. This generalizes existing work on sparse tensor decomposition and penalized matrix decompositions, in a manner parallel to the generalized lasso for regression and smoothing problems. Our approach presents many nontrivial challenges at the intersection of modeling and computation, which are studied in detail. An efficient coordinate-wise optimization algorithm for (PTD) is presented, and its convergence properties are characterized. The method is applied both to simulated data and real data on flu hospitalizations in Texas. These results show that our penalized tensor decomposition can offer major improvements on existing methods for analyzing multi-way data that exhibit smooth spatial or temporal features

    Preconditioned low-rank Riemannian optimization for linear systems with tensor product structure

    Full text link
    The numerical solution of partial differential equations on high-dimensional domains gives rise to computationally challenging linear systems. When using standard discretization techniques, the size of the linear system grows exponentially with the number of dimensions, making the use of classic iterative solvers infeasible. During the last few years, low-rank tensor approaches have been developed that allow to mitigate this curse of dimensionality by exploiting the underlying structure of the linear operator. In this work, we focus on tensors represented in the Tucker and tensor train formats. We propose two preconditioned gradient methods on the corresponding low-rank tensor manifolds: A Riemannian version of the preconditioned Richardson method as well as an approximate Newton scheme based on the Riemannian Hessian. For the latter, considerable attention is given to the efficient solution of the resulting Newton equation. In numerical experiments, we compare the efficiency of our Riemannian algorithms with other established tensor-based approaches such as a truncated preconditioned Richardson method and the alternating linear scheme. The results show that our approximate Riemannian Newton scheme is significantly faster in cases when the application of the linear operator is expensive.Comment: 24 pages, 8 figure
    • …
    corecore