1,150 research outputs found

    Received signal strength based bearing-only robot navigation in a sensor network field

    Get PDF
    pre-printThis paper presents a low-complexity, novel approach to wireless sensor network (WSN) assisted autonomous mobile robot (AMR) navigation. The goal is to have an AMR navigate to a target location using only the information inherent to WSNs, i.e., topology of the WSN and received signal strength (RSS) information, while executing an efficient navigation path. Here, the AMR has neither the location information for the WSN, nor any sophisticated ranging equipment for prior mapping. Two schemes are proposed utilizing particle filtering based bearing estimation with RSS values obtained from directional antennas. Real-world experiments demonstrate the effectiveness of the proposed schemes. In the basic node-to-node navigation scheme, the bearing-only particle filtering reduces trajectory length by 11.7% (indoors) and 15% (outdoors), when compared to using raw bearing measurements. The advanced scheme further reduces the trajectory length by 22.8% (indoors) and 19.8% (outdoors), as compared to the basic scheme. The mechanisms exploit the low-cost, low-complexity advantages of the WSNs to provide an effective method for map-less and ranging-less navigation

    Decentralized Riemannian Particle Filtering with Applications to Multi-Agent Localization

    Get PDF
    The primary focus of this research is to develop consistent nonlinear decentralized particle filtering approaches to the problem of multiple agent localization. A key aspect in our development is the use of Riemannian geometry to exploit the inherently non-Euclidean characteristics that are typical when considering multiple agent localization scenarios. A decentralized formulation is considered due to the practical advantages it provides over centralized fusion architectures. Inspiration is taken from the relatively new field of information geometry and the more established research field of computer vision. Differential geometric tools such as manifolds, geodesics, tangent spaces, exponential, and logarithmic mappings are used extensively to describe probabilistic quantities. Numerous probabilistic parameterizations were identified, settling on the efficient square-root probability density function parameterization. The square-root parameterization has the benefit of allowing filter calculations to be carried out on the well studied Riemannian unit hypersphere. A key advantage for selecting the unit hypersphere is that it permits closed-form calculations, a characteristic that is not shared by current solution approaches. Through the use of the Riemannian geometry of the unit hypersphere, we are able to demonstrate the ability to produce estimates that are not overly optimistic. Results are presented that clearly show the ability of the proposed approaches to outperform current state-of-the-art decentralized particle filtering methods. In particular, results are presented that emphasize the achievable improvement in estimation error, estimator consistency, and required computational burden

    Improved nonlinear filtering for target tracking.

    Get PDF
    The objective of this research is to develop robust and accurate tracking algorithms for various tracking applications. These tracking problems can be formulated as nonlinear filtering problems. The tracking algorithms will be developed based on an emerging promising nonlinear filter technique, known as sequential importance sampling (nick-name: particle filtering). This technique was introduced to the engineering community in the early years of 2000, and it has recently drawn significant attention from engineers and researchers in a wide range of areas. Despite the encouraging results reported in the current literature, there are still many open questions to be answered. For the first time, the major research effort will be focusing on making improvement to the particle filter based tracking algorithm in the following three aspects: (I) refining the particle filtering process by designing better proposal distributions (II) refining the dynamic model by using multiple-model method, (i.e. using switching dynamics and jump Markov process) and (III) refining system measurements by incorporating a data fusion stage for multiple measurement cues

    Towards Visual Localization, Mapping and Moving Objects Tracking by a Mobile Robot: a Geometric and Probabilistic Approach

    Get PDF
    Dans cette thèse, nous résolvons le problème de reconstruire simultanément une représentation de la géométrie du monde, de la trajectoire de l'observateur, et de la trajectoire des objets mobiles, à l'aide de la vision. Nous divisons le problème en trois étapes : D'abord, nous donnons une solution au problème de la cartographie et localisation simultanées pour la vision monoculaire qui fonctionne dans les situations les moins bien conditionnées géométriquement. Ensuite, nous incorporons l'observabilité 3D instantanée en dupliquant le matériel de vision avec traitement monoculaire. Ceci élimine les inconvénients inhérents aux systèmes stéréo classiques. Nous ajoutons enfin la détection et suivi des objets mobiles proches en nous servant de cette observabilité 3D. Nous choisissons une représentation éparse et ponctuelle du monde et ses objets. La charge calculatoire des algorithmes de perception est allégée en focalisant activement l'attention aux régions de l'image avec plus d'intérêt. ABSTRACT : In this thesis we give new means for a machine to understand complex and dynamic visual scenes in real time. In particular, we solve the problem of simultaneously reconstructing a certain representation of the world's geometry, the observer's trajectory, and the moving objects' structures and trajectories, with the aid of vision exteroceptive sensors. We proceeded by dividing the problem into three main steps: First, we give a solution to the Simultaneous Localization And Mapping problem (SLAM) for monocular vision that is able to adequately perform in the most ill-conditioned situations: those where the observer approaches the scene in straight line. Second, we incorporate full 3D instantaneous observability by duplicating vision hardware with monocular algorithms. This permits us to avoid some of the inherent drawbacks of classic stereo systems, notably their limited range of 3D observability and the necessity of frequent mechanical calibration. Third, we add detection and tracking of moving objects by making use of this full 3D observability, whose necessity we judge almost inevitable. We choose a sparse, punctual representation of both the world and the moving objects in order to alleviate the computational payload of the image processing algorithms, which are required to extract the necessary geometrical information out of the images. This alleviation is additionally supported by active feature detection and search mechanisms which focus the attention to those image regions with the highest interest. This focusing is achieved by an extensive exploitation of the current knowledge available on the system (all the mapped information), something that we finally highlight to be the ultimate key to success

    Algorithms for Fault Detection and Diagnosis

    Get PDF
    Due to the increasing demand for security and reliability in manufacturing and mechatronic systems, early detection and diagnosis of faults are key points to reduce economic losses caused by unscheduled maintenance and downtimes, to increase safety, to prevent the endangerment of human beings involved in the process operations and to improve reliability and availability of autonomous systems. The development of algorithms for health monitoring and fault and anomaly detection, capable of the early detection, isolation, or even prediction of technical component malfunctioning, is becoming more and more crucial in this context. This Special Issue is devoted to new research efforts and results concerning recent advances and challenges in the application of “Algorithms for Fault Detection and Diagnosis”, articulated over a wide range of sectors. The aim is to provide a collection of some of the current state-of-the-art algorithms within this context, together with new advanced theoretical solutions

    Performance Analysis of Bearings-only Tracking Problems for Maneuvering Target and Heterogeneous Sensor Applications

    Get PDF
    State estimation, i.e. determining the trajectory, of a maneuvering target from noisy measurements collected by a single or multiple passive sensors (e.g. passive sonar and radar) has wide civil and military applications, for example underwater surveillance, air defence, wireless communications, and self-protection of military vehicles. These passive sensors are listening to target emitted signals without emitting signals themselves which give them concealing properties. Tactical scenarios exists where the own position shall not be revealed, e.g. for tracking submarines with passive sonar or tracking an aerial target by means of electro-optic image sensors like infrared sensors. This estimation process is widely known as bearings-only tracking. On the one hand, a challenge is the high degree of nonlinearity in the estimation process caused by the nonlinear relation of angular measurements to the Cartesian state. On the other hand, passive sensors cannot provide direct target location measurements, so bearings-only tracking suffers from poor target trajectory estimation accuracy due to marginal observability from sensor measurements. In order to achieve observability, that means to be able to estimate the complete target state, multiple passive sensor measurements must be fused. The measurements can be recorded spatially distributed by multiple dislocated sensor platforms or temporally distributed by a single, moving sensor platform. Furthermore, an extended case of bearings-only tracking is given if heterogeneous measurements from targets emitting different types of signals, are involved. With this, observability can also be achieved on a single, not necessarily moving platform. In this work, a performance bound for complex motion models, i.e. piecewisely maneuvering targets with unknown maneuver change times, by means of bearings-only measurements from a single, moving sensor platform is derived and an efficient estimator is implemented and analyzed. Furthermore, an observability analysis is carried out for targets emitting acoustic and electromagnetic signals. Here, the different signal propagation velocities can be exploited to ensure observability on a single, not necessarily moving platform. Based on the theoretical performance and observability analyses a distributed fusion system has been realized by means of heterogeneous sensors, which shall detect an event and localize a threat. This is performed by a microphone array to detect sound waves emitted by the threat as well as a radar detector that detects electromagnetic emissions from the threat. Since multiple platforms are involved to provide increased observability and also redundancy against possible breakdowns, a WiFi mobile ad hoc network is used for communications. In order to keep up the network in a breakdown OLSR (optimized link state routing) routing approach is employed

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    Multi-Robot Active Information Gathering Using Random Finite Sets

    Get PDF
    Many tasks in the modern world involve collecting information, such as infrastructure inspection, security and surveillance, environmental monitoring, and search and rescue. All of these tasks involve searching an environment to detect, localize, and track objects of interest, such as damage to roadways, suspicious packages, plant species, or victims of a natural disaster. In any of these tasks the number of objects of interest is often not known at the onset of exploration. Teams of robots can automate these often dull, dirty, or dangerous tasks to decrease costs and improve speed and safety. This dissertation addresses the problem of automating data collection processes, so that a team of mobile sensor platforms is able to explore an environment to determine the number of objects of interest and their locations. In real-world scenarios, robots may fail to detect objects within the field of view, receive false positive measurements to clutter objects, and be unable to disambiguate true objects. This makes data association, i.e., matching individual measurements to targets, difficult. To account for this, we utilize filtering algorithms based on random finite sets to simultaneously estimate the number of objects and their locations within the environment without the need to explicitly consider data association. Using the resulting estimates they receive, robots choose actions that maximize the mutual information between the set of targets and the binary events of receiving no detections. This effectively hedges against uninformative actions and leads to a closed form equation to compute mutual information, allowing the robot team to plan over a long time horizon. The robots either communicate with a central agent, which performs the estimation and control computations, or act in a decentralized manner. Our extensive hardware and simulated experiments validate the unified estimation and control framework, using robots with a wide variety of mobility and sensing capabilities to showcase the broad applicability of the framework
    corecore