418 research outputs found

    Microprocessor based signal processing techniques for system identification and adaptive control of DC-DC converters

    Get PDF
    PhD ThesisMany industrial and consumer devices rely on switch mode power converters (SMPCs) to provide a reliable, well regulated, DC power supply. A poorly performing power supply can potentially compromise the characteristic behaviour, efficiency, and operating range of the device. To ensure accurate regulation of the SMPC, optimal control of the power converter output is required. However, SMPC uncertainties such as component variations and load changes will affect the performance of the controller. To compensate for these time varying problems, there is increasing interest in employing real-time adaptive control techniques in SMPC applications. It is important to note that many adaptive controllers constantly tune and adjust their parameters based upon on-line system identification. In the area of system identification and adaptive control, Recursive Least Square (RLS) method provide promising results in terms of fast convergence rate, small prediction error, accurate parametric estimation, and simple adaptive structure. Despite being popular, RLS methods often have limited application in low cost systems, such as SMPCs, due to the computationally heavy calculations demanding significant hardware resources which, in turn, may require a high specification microprocessor to successfully implement. For this reason, this thesis presents research into lower complexity adaptive signal processing and filtering techniques for on-line system identification and control of SMPCs systems. The thesis presents the novel application of a Dichotomous Coordinate Descent (DCD) algorithm for the system identification of a dc-dc buck converter. Two unique applications of the DCD algorithm are proposed; system identification and self-compensation of a dc-dc SMPC. Firstly, specific attention is given to the parameter estimation of dc-dc buck SMPC. It is computationally efficient, and uses an infinite impulse response (IIR) adaptive filter as a plant model. Importantly, the proposed method is able to identify the parameters quickly and accurately; thus offering an efficient hardware solution which is well suited to real-time applications. Secondly, new alternative adaptive schemes that do not depend entirely on estimating the plant parameters is embedded with DCD algorithm. The proposed technique is based on a simple adaptive filter method and uses a one-tap finite impulse response (FIR) prediction error filter (PEF). Experimental and simulation results clearly show the DCD technique can be optimised to achieve comparable performance to classic RLS algorithms. However, it is computationally superior; thus making it an ideal candidate technique for low cost microprocessor based applications.Iraq Ministry of Higher Educatio

    Identification of nonlinear time-varying systems using an online sliding-window and common model structure selection (CMSS) approach with applications to EEG

    Get PDF
    The identification of nonlinear time-varying systems using linear-in-the-parameter models is investigated. A new efficient Common Model Structure Selection (CMSS) algorithm is proposed to select a common model structure. The main idea and key procedure is: First, generate K 1 data sets (the first K data sets are used for training, and theK 1 th one is used for testing) using an online sliding window method; then detect significant model terms to form a common model structure which fits over all the K training data sets using the new proposed CMSS approach. Finally, estimate and refine the time-varying parameters for the identified common-structured model using a Recursive Least Squares (RLS) parameter estimation method. The new method can effectively detect and adaptively track the transient variation of nonstationary signals. Two examples are presented to illustrate the effectiveness of the new approach including an application to an EEG data set

    Time-varying model identification for time-frequency feature extraction from EEG data

    Get PDF
    A novel modelling scheme that can be used to estimate and track time-varying properties of nonstationary signals is investigated. This scheme is based on a class of time-varying AutoRegressive with an eXogenous input (ARX) models where the associated time-varying parameters are represented by multi-wavelet basis functions. The orthogonal least square (OLS) algorithm is then applied to refine the model parameter estimates of the time-varying ARX model. The main features of the multi-wavelet approach is that it enables smooth trends to be tracked but also to capture sharp changes in the time-varying process parameters. Simulation studies and applications to real EEG data show that the proposed algorithm can provide important transient information on the inherent dynamics of nonstationary processes

    Neuro-fuzzy identification of an internal combustion engine

    Get PDF
    Dynamic modeling and identification of an internal combustion engine (ICE) model is presented in this paper. Initially, an analytical model of an internal combustion engine simulated within SIMULINK environment is excited by pseudorandom binary sequence (PRBS) input. This random signals input is chosen to excite the dynamic behavior of the system over a large range of frequencies. The input and output data obtained from the simulation of the analytical model is used for the identification of the system. Next, a parametric modeling of the internal combustion engine using recursive least squares (RLS) technique within an auto-regressive external input (ARX) model structure and a nonparametric modeling using neuro-fuzzy modeling (ANFIS) approach are introduced. Both parametric and nonparametric models verified using one-step-ahead (OSA) prediction, mean squares error (MSE) between actual and predicted output and correlation tests. Although both methods are capable to represent the dynamic of the system very well, it is demonstrated that ANFIS gives better prediction results than RLS in terms of mean squares error achieved between the actual and predicted signals

    SoC estimation for lithium-ion batteries : review and future challenges

    Get PDF
    ABSTRACT: Energy storage emerged as a top concern for the modern cities, and the choice of the lithium-ion chemistry battery technology as an effective solution for storage applications proved to be a highly efficient option. State of charge (SoC) represents the available battery capacity and is one of the most important states that need to be monitored to optimize the performance and extend the lifetime of batteries. This review summarizes the methods for SoC estimation for lithium-ion batteries (LiBs). The SoC estimation methods are presented focusing on the description of the techniques and the elaboration of their weaknesses for the use in on-line battery management systems (BMS) applications. SoC estimation is a challenging task hindered by considerable changes in battery characteristics over its lifetime due to aging and to the distinct nonlinear behavior. This has led scholars to propose different methods that clearly raised the challenge of establishing a relationship between the accuracy and robustness of the methods, and their low complexity to be implemented. This paper publishes an exhaustive review of the works presented during the last five years, where the tendency of the estimation techniques has been oriented toward a mixture of probabilistic techniques and some artificial intelligence

    Performance analysis of the generalised projection identification for time-varying systems

    Get PDF
    © The Institution of Engineering and Technology 2016. The least mean square methods include two typical parameter estimation algorithms, which are the projection algorithm and the stochastic gradient algorithm, the former is sensitive to noise and the latter is not capable of tracking the timevarying parameters. On the basis of these two typical algorithms, this study presents a generalised projection identification algorithm (or a finite data window stochastic gradient identification algorithm) for time-varying systems and studies its convergence by using the stochastic process theory. The analysis indicates that the generalised projection algorithm can track the time-varying parameters and requires less computational effort compared with the forgetting factor recursive least squares algorithm. The way of choosing the data window length is stated so that the minimum parameter estimation error upper bound can be obtained. The numerical examples are provided

    Novel hybrid extraction systems for fetal heart rate variability monitoring based on non-invasive fetal electrocardiogram

    Get PDF
    This study focuses on the design, implementation and subsequent verification of a new type of hybrid extraction system for noninvasive fetal electrocardiogram (NI-fECG) processing. The system designed combines the advantages of individual adaptive and non-adaptive algorithms. The pilot study reviews two innovative hybrid systems called ICA-ANFIS-WT and ICA-RLS-WT. This is a combination of independent component analysis (ICA), adaptive neuro-fuzzy inference system (ANFIS) algorithm or recursive least squares (RLS) algorithm and wavelet transform (WT) algorithm. The study was conducted on clinical practice data (extended ADFECGDB database and Physionet Challenge 2013 database) from the perspective of non-invasive fetal heart rate variability monitoring based on the determination of the overall probability of correct detection (ACC), sensitivity (SE), positive predictive value (PPV) and harmonic mean between SE and PPV (F1). System functionality was verified against a relevant reference obtained by an invasive way using a scalp electrode (ADFECGDB database), or relevant reference obtained by annotations (Physionet Challenge 2013 database). The study showed that ICA-RLS-WT hybrid system achieve better results than ICA-ANFIS-WT. During experiment on ADFECGDB database, the ICA-RLS-WT hybrid system reached ACC > 80 % on 9 recordings out of 12 and the ICA-ANFIS-WT hybrid system reached ACC > 80 % only on 6 recordings out of 12. During experiment on Physionet Challenge 2013 database the ICA-RLS-WT hybrid system reached ACC > 80 % on 13 recordings out of 25 and the ICA-ANFIS-WT hybrid system reached ACC > 80 % only on 7 recordings out of 25. Both hybrid systems achieve provably better results than the individual algorithms tested in previous studies.Web of Science713178413175

    Fuzzy Hammerstein Model of Nonlinear Plant

    Get PDF
    This paper presents the synthesis and analysis of the enhanced predictive fuzzy Hammerstein model of the water tank system. Fuzzy Hammerstein model was compared with three other fuzzy models: the first was synthesized using Mamdani type rule base, the second – Takagi-Sugeno type rule base and the third – composed of Mamdani and Takagi-Sugeno rule bases. The synthesized model is invertible so it can be used in the model based control. The fuzzy Hammerstein model was synthesized to eliminate disadvantages of the other fuzzy models. The advantage of the fuzzy Hammerstein model was experimentally proved and presented in this paper

    Hybrid Dy-NFIS & RLS equalization for ZCC code in optical-CDMA over multi-mode optical fiber

    Get PDF
    For long haul coherent optical fiber communication systems, it is significant to precisely monitor the quality of transmission links and optical signals. The channel capacity beyond Shannon limit of Single-mode optical fiber (SMOF) is achieved with the help of Multi-mode optical fiber (MMOF), where the signal is multiplexed in different spatial modes. To increase single-mode transmission capacity and to avoid a foreseen “capacity crunch”, researchers have been motivated to employ MMOF as an alternative. Furthermore, different multiplexing techniques could be applied in MMOF to improve the communication system. One of these techniques is the Optical Code Division Multiple Access (Optical-CDMA), which simplifies and decentralizes network controls to improve spectral efficiency and information security increasing flexibility in bandwidth granularity. This technique also allows synchronous and simultaneous transmission medium to be shared by many users. However, during the propagation of the data over the MMOF based on Optical-CDMA, an inevitable encountered issue is pulse dispersion, nonlinearity and MAI due to mode coupling. Moreover, pulse dispersion, nonlinearity and MAI are significant aspects for the evaluation of the performance of high-speed MMOF communication systems based on Optical-CDMA. This work suggests a hybrid algorithm based on nonlinear algorithm (Dynamic evolving neural fuzzy inference (Dy-NFIS)) and linear algorithm (Recursive least squares (RLS)) equalization for ZCC code in Optical-CDMA over MMOF. Root mean squared error (RMSE), mean squared error (MSE) and Structural Similarity index (SSIM) are used to measure performance results

    System identification and adaptive current balancing ON/OFF control of DC-DC switch mode power converter

    Get PDF
    PhD ThesisReliability becomes more and more important in industrial application of Switch Mode Power Converters (SMPCs). A poorly performing power supply in a power system can influence its operation and potentially compromise the entire system performance in terms of efficiency. To maintain a high reliability, high performance SMPC effective control is necessary for regulating the output of the SMPC system. However, an uncertainty is a key factor in SMPC operation. For example, parameter variations can be caused by environmental effects such as temperature, pressure and humidity. Usually, fixed controllers cannot respond optimally and generate an effective signal to compensate the output error caused by time varying parameter changes. Therefore, the stability is potentially compromised in this case. To resolve this problem, increasing interest has been shown in employing online system identification techniques to estimate the parameter values in real time. Moreover, the control scheme applied after system identification is often called “adaptive control” due to the control signal selfadapting to the parameter variation by receiving the information from the system identification process. In system identification, the Recursive Least Square (RLS) algorithm has been widely used because it is well understood and easy to implement. However, despite the popularity of RLS, the high computational cost and slow convergence speed are the main restrictions for use in SMPC applications. For this reason, this research presents an alternative algorithm to RLS; Fast Affline Projection (FAP). Detailed mathematical analysis proves the superior computational efficiency of this algorithm. Moreover, simulation and experiment result verify this unique adaptive algorithm has improved performance in terms of computational cost and convergence speed compared with the conventional RLS methods. Finally, a novel adaptive control scheme is designed for optimal control of a DC-DC buck converter during transient periods. By applying the proposed adaptive algorithm, the control signal can be successfully employed to change the ON/OFF state of the power transistor in the DC-DC buck converter to improve the dynamic behaviour. Simulation and experiment result show the proposed adaptive control scheme significantly improves the transient response of the buck converter, particularly during an abrupt load change conditio
    corecore