181 research outputs found

    Methodological development

    Get PDF
    Book description: Human-Computer Interaction draws on the fields of computer science, psychology, cognitive science, and organisational and social sciences in order to understand how people use and experience interactive technology. Until now, researchers have been forced to return to the individual subjects to learn about research methods and how to adapt them to the particular challenges of HCI. This is the first book to provide a single resource through which a range of commonly used research methods in HCI are introduced. Chapters are authored by internationally leading HCI researchers who use examples from their own work to illustrate how the methods apply in an HCI context. Each chapter also contains key references to help researchers find out more about each method as it has been used in HCI. Topics covered include experimental design, use of eyetracking, qualitative research methods, cognitive modelling, how to develop new methodologies and writing up your research

    A Nine Month Report on Progress Towards a Framework for Evaluating Advanced Search Interfaces considering Information Retrieval and Human Computer Interaction

    No full text
    This is a nine month progress report detailing my research into supporting users in their search for information, where the questions, results or even thei

    Multi-Robot User Interface Modeling

    Get PDF
    This paper investigates the problem of user interface design and evaluation for autonomous teams of heterogeneous mobile robots. We explore an operator modeling approach to multi-robot user interface evaluation. Specifically the authors generated GOMS models, a type of user model, to investigate potential interface problems and to guide the interface development process. Results indicate that our interface design changes improve the usability of multi-robot mission generation substantially. We conclude that modeling techniques such as GOMS can play an important role in robotic interface development. Moreover, this research indicates that these techniques can be performed in an inexpensive and timely manner, potentially reducing the need for costly and demanding usability studies

    Survey of Human Models for Verification of Human-Machine Systems

    Full text link
    We survey the landscape of human operator modeling ranging from the early cognitive models developed in artificial intelligence to more recent formal task models developed for model-checking of human machine interactions. We review human performance modeling and human factors studies in the context of aviation, and models of how the pilot interacts with automation in the cockpit. The purpose of the survey is to assess the applicability of available state-of-the-art models of the human operators for the design, verification and validation of future safety-critical aviation systems that exhibit higher-level of autonomy, but still require human operators in the loop. These systems include the single-pilot aircraft and NextGen air traffic management. We discuss the gaps in existing models and propose future research to address them

    Evaluating advanced search interfaces using established information-seeking model

    No full text
    When users have poorly defined or complex goals search interfaces offering only keyword searching facilities provide inadequate support to help them reach their information-seeking objectives. The emergence of interfaces with more advanced capabilities such as faceted browsing and result clustering can go some way to some way toward addressing such problems. The evaluation of these interfaces, however, is challenging since they generally offer diverse and versatile search environments that introduce overwhelming amounts of independent variables to user studies; choosing the interface object as the only independent variable in a study would reveal very little about why one design out-performs another. Nonetheless if we could effectively compare these interfaces we would have a way to determine which was best for a given scenario and begin to learn why. In this article we present a formative framework for the evaluation of advanced search interfaces through the quantification of the strengths and weaknesses of the interfaces in supporting user tactics and varying user conditions. This framework combines established models of users, user needs, and user behaviours to achieve this. The framework is applied to evaluate three search interfaces and demonstrates the potential value of this approach to interactive IR evaluation

    Spectrodirectional investigation of a geometric-optical canopy reflectance model by laboratory simulation

    Get PDF
    Canopy reflectance models (CRMs) can accurately estimate vegetation canopy biophysical-structural information such as Leaf Area Index (LAI) inexpensively using satellite imagery. The strict physical basis which geometric-optical CRMs employ to mathematically link canopy bidirectional reflectance and structure allows for the tangible replication of a CRM's geometric abstraction of a canopy in the laboratory, enabling robust CRM validation studies. To this end, the ULGS-2 goniometer was used to obtain multiangle, hyperspectral (Spectrodirectional) measurements of a specially-designed tangible physical model forest, developed based upon the Geometric-Optical Mutual Shadowing (GOMS) CRM, at three different canopy cover densities. GOMS forwardmodelled reflectance values had high levels of agreement with ULGS-2 measurements, with obtained reflectance RMSE values ranging from 0.03% to 0.1%. Canopy structure modelled via GOMS Multiple-Forward-Mode (MFM) inversion had varying levels of success. The methods developed in this thesis can potentially be extended to more complex CRMs through the implementation of 3D printing

    Math in the Dark: Tools for Expressing Mathematical Content by Visually Impaired Students

    Get PDF
    Blind and visually impaired students are under-represented in the science, technology, engineering, and mathematics disciplines of higher education and the workforce. This is due primarily to the difficulties they encounter in trying to succeed in mathematics courses. While there are sufficient tools available to create Braille content, including the special Nemeth Braille used in the U.S. for mathematics constructs, there are very few tools to allow a blind or visually impaired student to create his/her own mathematical content in a manner that sighted individuals can use. The software tools that are available are isolated, do not interface well with other common software, and may be priced for institutional use instead of individual use. Instructors are unprepared or unable to interact with these students in a real-time manner. All of these factors combine to isolate the blind or visually impaired student in the study of mathematics. Nemeth Braille is a complete mathematical markup system in Braille, containing everything that is needed to produce quality math content at all levels of complexity. Blind and visually impaired students should not have to learn any additional markup languages in order to produce math content. This work addressed the needs of the individual blind or visually impaired student who must be able to produce mathematical content for course assignments, and who wishes to interact with peers and instructors on a real-time basis to share mathematical content. Two tools were created to facilitate mathematical interaction: a Nemeth Braille editor, and a real-time instant messenger chat capability that supports Nemeth Braille and MathML constructs. In the Visually Impaired view, the editor accepts Nemeth Braille input, displays the math expressions in a tree structure which will allow sub-expressions to be expanded or collapsed. The Braille constructs can be translated to MathML for display within MathType. Similarly, in the Sighted view, math constructs entered in MathType can be translated into Nemeth Braille. Mathematical content can then be shared between sighted and visually impaired users via the instant messenger chat capability. Using Math in the Dark software, blind and visually impaired students can work math problems fully in Nemeth Braille and can seamlessly convert their work into MathML for viewing by sighted instructors. The converted output has the quality of professionally produced math content. Blind and VI students can also communicate and share math constructs with a sighted partner via a real-time chat feature, with automatic translation in both directions, allowing VI students to obtain help in real-time from a sighted instructor or tutor. By eliminating the burden of translation, this software will help to remove the barriers faced by blind and VI students who wish to excel in the STEM fields of study

    Assessing Smartphone Ease of Use and Learning from the Perspective of Novice and Expert Users: Development and Illustration of Mobile Benchmark Tasks

    Get PDF
    Assessing usability of device types with novel function sets that are adopted by diverse user groups requires one to explore a variety of approaches. In this paper, we develop such an approach to assess usability of smartphone devices. Using a three-stage Delphi-method study, we identify sets of benchmark tasks that can be used to assess usability for various user types. These task sets enable one to evaluate smartphone platforms from two perspectives: ease of learning (for those unfamiliar with smartphone use) and ease of use (for experienced users). We then demonstrate an approach for using this task set by performing an exploratory study of both inexperienced smartphone users (using a convenience sample) and experienced users (using the keystroke model). Our exploration illustrates the methodology for using such a task set and, in so doing, reveals significant differences among the leading smartphone platforms between novice and expert users. As such, we provide some preliminary evidence that ease of use is indeed significantly different from ease of learning

    An analytical inspection framework for evaluating the search tactics and user profiles supported by information seeking interfaces

    No full text
    Searching is something we do everyday both in digital and physical environments. Whether we are searching for books in a library or information on the web, search is becoming increasingly important. For many years, however, the standard for search in software has been to provide a keyword search box that has, over time, been embellished with query suggestions, Boolean operators, and interactive feedback. More recent research has focused on designing search interfaces that better support exploration and learning. Consequently, the aim of this research has been to develop a framework that can reveal to designers how well their search interfaces support different styles of searching behaviour.The primary contribution of this research has been to develop a usability evaluation method, in the form of a lightweight analytical inspection framework, that can assess both search designs and fully implemented systems. The framework, called Sii, provides three types of analyses: 1) an analysis of the amount of support the different features of a design provide; 2) an analysis of the amount of support provided for 32 known search tactics; and 3) an analysis of the amount of support provided for 16 different searcher profiles, such as those who are finding, browsing, exploring, and learning. The design of the framework was validated by six independent judges, and the results were positively correlated against the results of empirical user studies. Further, early investigations showed that Sii has a learning curve that begins at around one and a half hours, and, when using identical analysis results, different evaluators produce similar design revisions.For Search experts, building interfaces for their systems, Sii provides a Human-Computer Interaction evaluation method that addresses searcher needs rather than system optimisation. For Human-Computer Interaction experts, designing novel interfaces that provide search functions, Sii provides the opportunity to assess designs using the knowledge and theories generated by the Information Seeking community. While the research reported here is under controlled environments, future work is planned that will investigate the use of Sii by independent practitioners on their own projects
    • ā€¦
    corecore