1,865 research outputs found

    Formal Analysis of Network Protocols

    Get PDF
    Today’s Internet is becoming increasingly complex and fragile. Current performance centric techniques on network analysis and runtime verification have became inadequate in the development of robust networks. To cope with these challenges there is a growing interest in the use of formal analysis techniques to reason about network protocol correctness throughout the network development cycle. This talk surveys recent work on the use of formal analysis techniques to aid in design, implementation, and analysis of network protocols. We first present a general framework that covers a majority of existing formal analysis techniques on both the control and routing planes of networks, and present a classification and taxonomy of techniques according to the proposed framework. Using four representative case studies (Metarouting, rcc, axiomatic formulation, and Alloy based analysis), we discuss various aspects of formal network analysis, including formal specification, formal verification, and system validation. Their strengths and limitations are evaluated and compared in detail

    Framework Programmable Platform for the Advanced Software Development Workstation: Preliminary system design document

    Get PDF
    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The focus here is on the design of components that make up the FPP. These components serve as supporting systems for the Integration Mechanism and the Framework Processor and provide the 'glue' that ties the FPP together. Also discussed are the components that allow the platform to operate in a distributed, heterogeneous environment and to manage the development and evolution of software system artifacts

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Framework programmable platform for the advanced software development workstation. Integration mechanism design document

    Get PDF
    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by this model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Detecting Abnormal Social Robot Behavior through Emotion Recognition

    Get PDF
    Sharing characteristics with both the Internet of Things and the Cyber Physical Systems categories, a new type of device has arrived to claim a third category and raise its very own privacy concerns. Social robots are in the market asking consumers to become part of their daily routine and interactions. Ranging in the level and method of communication with the users, all social robots are able to collect, share and analyze a great variety and large volume of personal data.In this thesis, we focus the community’s attention to this emerging area of interest for privacy and security research. We discuss the likely privacy issues, comment on current defense mechanisms that are applicable to this new category of devices, outline new forms of attack that are made possible through social robots, highlight paths that research on consumer perceptions could follow, and propose a system for detecting abnormal social robot behavior based on emotion detection

    A New Objective Function Based on Additive Combination of Node and Link Metrics as a Mechanism Path Selection for RPL Protocol

    Get PDF
    Since its development by IETF, the IPv6 routing protocol for low power and lossy networks (RPL) remains the subject of several researches. RPL is based on objective function as a mechanism selection of paths in the network. However, the default objective functions standardized selects the routes according to a single routing metric that leads to an unoptimized path selection and a lot of parent changes. Thus, we propose in this paper weighted combined metrics objective function (WCM-OF) and non-weighted combined metrics objective function (NWCM-OF) that are based both on additive link quality and energy metrics with equal weights or not to achieve a tradeoff between reliability and saved energy levels. The proposed objective functions were implemented in the core of Contiki operating system and evaluated with Cooja emulator. Results show that the proposed objective functions improved the network performances compared to default objective functions
    • …
    corecore