241 research outputs found

    Assistance strategies for robotized laparoscopy

    Get PDF
    Robotizing laparoscopic surgery not only allows achieving better accuracy to operate when a scale factor is applied between master and slave or thanks to the use of tools with 3 DoF, which cannot be used in conventional manual surgery, but also due to additional informatic support. Relying on computer assistance different strategies that facilitate the task of the surgeon can be incorporated, either in the form of autonomous navigation or cooperative guidance, providing sensory or visual feedback, or introducing certain limitations of movements. This paper describes different ways of assistance aimed at improving the work capacity of the surgeon and achieving more safety for the patient, and the results obtained with the prototype developed at UPC.Peer ReviewedPostprint (author's final draft

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Augmented reality (AR) for surgical robotic and autonomous systems: State of the art, challenges, and solutions

    Get PDF
    Despite the substantial progress achieved in the development and integration of augmented reality (AR) in surgical robotic and autonomous systems (RAS), the center of focus in most devices remains on improving end-effector dexterity and precision, as well as improved access to minimally invasive surgeries. This paper aims to provide a systematic review of different types of state-of-the-art surgical robotic platforms while identifying areas for technological improvement. We associate specific control features, such as haptic feedback, sensory stimuli, and human-robot collaboration, with AR technology to perform complex surgical interventions for increased user perception of the augmented world. Current researchers in the field have, for long, faced innumerable issues with low accuracy in tool placement around complex trajectories, pose estimation, and difficulty in depth perception during two-dimensional medical imaging. A number of robots described in this review, such as Novarad and SpineAssist, are analyzed in terms of their hardware features, computer vision systems (such as deep learning algorithms), and the clinical relevance of the literature. We attempt to outline the shortcomings in current optimization algorithms for surgical robots (such as YOLO and LTSM) whilst providing mitigating solutions to internal tool-to-organ collision detection and image reconstruction. The accuracy of results in robot end-effector collisions and reduced occlusion remain promising within the scope of our research, validating the propositions made for the surgical clearance of ever-expanding AR technology in the future

    Advances in Minimally Invasive Surgery

    Get PDF
    The minimally invasive approach in medicine is one of the most common areas of interest in surgery.Advances in Minimally Invasive Surgery describes the latest trends, indications, techniques, and approaches in minimally invasive surgery. It provides step-by-step instructions for both routine and diagnostic procedures via illustrations and video collection

    Development of a Three-Dimensional Image-Guided Needle Positioning System for Small Animal Interventions

    Get PDF
    Conventional needle positioning techniques for small animal microinjections are fraught with issues of repeatability and targeting accuracy. To improve the outcomes of these interventions a small animal needle positioning system guided by micro-computed tomography (micro-CT) imaging was developed. A phantom was developed to calibrate the geometric accuracy of micro-CT scanners to a traceable standard of measurement. Use of the phantom ensures the geometric fidelity of micro-CT images for use in image-guided interventions or other demanding quantitative applications. The design of a robot is described which features a remote center of motion architecture and is compact enough to operate within a micro-CT bore. Methods to calibrate the robot and register it to a micro-CT scanner are introduced. The performance of the robot is characterized and a mean targeting accuracy of 149 ± 41 µm estimated. The robot is finally demonstrated by completing an in vivo biomedical application

    Design of a minimally invasive single port HDR brachytherapy applicator for the treatment of lung cancer

    Get PDF
    Cancer has become the number one cause of death in Canada and lung cancer is its deadliest form. Surgical resection remains as the treatment of choice for most patients; however, in many cases a less aggressive alternative such as brachytherapy may be preferable. Today, HDR brachytherapy is a relatively common procedure but with current techniques and equipment only tumours close to the main bronchi can be reached. This project describes the design, development and validation of a first prototype of an ultrasound-guided needle guidance system that would enable physicians to perform HDR brachytherapy for the treatment of lung cancer in a minimally invasive manner through the intercostal spaces. The development of the mechanical components is thoroughly described followed by the description of the electronic control system that was developed for this novel mechatronic medical tool. Finally through validation experiments, the approach was shown to be an accurate and viable approach for precisely reaching desired targets with a wide yet flexible needle

    Multi-robot cooperative platform : a task-oriented teleoperation paradigm

    Get PDF
    This thesis proposes the study and development of a teleoperation system based on multi-robot cooperation under the task oriented teleoperation paradigm: Multi-Robot Cooperative Paradigm, MRCP. In standard teleoperation, the operator uses the master devices to control the remote slave robot arms. These arms reproduce the desired movements and perform the task. With the developed work, the operator can virtually manipulate an object. MRCP automatically generates the arms orders to perform the task. The operator does not have to solve situations arising from possible restrictions that the slave arms may have. The research carried out is therefore aimed at improving the accuracy teleoperation tasks in complex environments, particularly in the field of robot assisted minimally invasive surgery. This field requires patient safety and the workspace entails many restrictions to teleoperation. MRCP can be defined as a platform composed of several robots that cooperate automatically to perform a teleoperated task, creating a robotic system with increased capacity (workspace volume, accessibility, dexterity ...). The cooperation is based on transferring the task between robots when necessary to enable a smooth task execution. The MRCP control evaluates the suitability of each robot to continue with the ongoing task and the optimal time to execute a task transfer between the current selected robot and the best candidate to continue with the task. From the operator¿s point of view, MRCP provides an interface that enables the teleoperation though the task-oriented paradigm: operator orders are translated into task actions instead of robot orders. This thesis is structured as follows: The first part is dedicated to review the current solutions in the teleoperation of complex tasks and compare them with those proposed in this research. The second part of the thesis presents and reviews in depth the different evaluation criteria to determine the suitability of each robot to continue with the execution of a task, considering the configuration of the robots and emphasizing the criterion of dexterity and manipulability. The study reviews the different required control algorithms to enable the task oriented telemanipulation. This proposed teleoperation paradigm is transparent to the operator. Then, the Thesis presents and analyses several experimental results using MRCP in the field of minimally invasive surgery. These experiments study the effectiveness of MRCP in various tasks requiring the cooperation of two hands. A type task is used: a suture using minimally invasive surgery technique. The analysis is done in terms of execution time, economy of movement, quality and patient safety (potential damage produced by undesired interaction between the tools and the vital tissues of the patient). The final part of the thesis proposes the implementation of different virtual aids and restrictions (guided teleoperation based on haptic visual and audio feedback, protection of restricted workspace regions, etc.) using the task oriented teleoperation paradigm. A framework is defined for implementing and applying a basic set of virtual aids and constraints within the framework of a virtual simulator for laparoscopic abdominal surgery. The set of experiments have allowed to validate the developed work. The study revealed the influence of virtual aids in the learning process of laparoscopic techniques. It has also demonstrated the improvement of learning curves, which paves the way for its implementation as a methodology for training new surgeons.Aquesta tesi doctoral proposa l'estudi i desenvolupament d'un sistema de teleoperació basat en la cooperació multi-robot sota el paradigma de la teleoperació orientada a tasca: Multi-Robot Cooperative Paradigm, MRCP. En la teleoperació clàssica, l'operador utilitza els telecomandaments perquè els braços robots reprodueixin els seus moviments i es realitzi la tasca desitjada. Amb el treball realitzat, l'operador pot manipular virtualment un objecte i és mitjançant el MRCP que s'adjudica a cada braç les ordres necessàries per realitzar la tasca, sense que l'operador hagi de resoldre les situacions derivades de possibles restriccions que puguin tenir els braços executors. La recerca desenvolupada està doncs orientada a millorar la teleoperació en tasques de precisió en entorns complexos i, en particular, en el camp de la cirurgia mínimament invasiva assistida per robots. Aquest camp imposa condicions de seguretat del pacient i l'espai de treball comporta moltes restriccions a la teleoperació. MRCP es pot definir com a una plataforma formada per diversos robots que cooperen de forma automàtica per dur a terme una tasca teleoperada, generant un sistema robòtic amb capacitats augmentades (volums de treball, accessibilitat, destresa,...). La cooperació es basa en transferir la tasca entre robots a partir de determinar quin és aquell que és més adequat per continuar amb la seva execució i el moment òptim per realitzar la transferència de la tasca entre el robot actiu i el millor candidat a continuar-la. Des del punt de vista de l'operari, MRCP ofereix una interfície de teleoperació que permet la realització de la teleoperació mitjançant el paradigma d'ordres orientades a la tasca: les ordres es tradueixen en accions sobre la tasca en comptes d'estar dirigides als robots. Aquesta tesi està estructurada de la següent manera: Primerament es fa una revisió de l'estat actual de les diverses solucions desenvolupades actualment en el camp de la teleoperació de tasques complexes, comparant-les amb les proposades en aquest treball de recerca. En el segon bloc de la tesi es presenten i s'analitzen a fons els diversos criteris per determinar la capacitat de cada robot per continuar l'execució d'una tasca, segons la configuració del conjunt de robots i fent especial èmfasi en el criteri de destresa i manipulabilitat. Seguint aquest estudi, es presenten els diferents processos de control emprats per tal d'assolir la telemanipulació orientada a tasca de forma transparent a l'operari. Seguidament es presenten diversos resultats experimentals aplicant MRCP al camp de la cirurgia mínimament invasiva. En aquests experiments s'estudia l'eficàcia de MRCP en diverses tasques que requereixen de la cooperació de dues mans. S'ha escollit una tasca tipus: sutura amb tècnica de cirurgia mínimament invasiva. L'anàlisi es fa en termes de temps d'execució, economia de moviment, qualitat i seguretat del pacient (potencials danys causats per la interacció no desitjada entre les eines i els teixits vitals del pacient). Finalment s'ha estudiat l'ús de diferents ajudes i restriccions virtuals (guiat de la teleoperació via retorn hàptic, visual o auditiu, protecció de regions de l'espai de treball, etc) dins el paradigma de teleoperació orientada a tasca. S'ha definint un marc d'aplicació base i implementant un conjunt de restriccions virtuals dins el marc d'un simulador de cirurgia laparoscòpia abdominal. El conjunt d'experiments realitzats han permès validar el treball realitzat. Aquest estudi ha permès determinar la influencia de les ajudes virtuals en el procés d'aprenentatge de les tècniques laparoscòpiques. S'ha evidenciat una millora en les corbes d'aprenentatge i obre el camí a la seva implantació com a metodologia d'entrenament de nous cirurgians.Postprint (published version

    Patient Specific Systems for Computer Assisted Robotic Surgery Simulation, Planning, and Navigation

    Get PDF
    The evolving scenario of surgery: starting from modern surgery, to the birth of medical imaging and the introduction of minimally invasive techniques, has seen in these last years the advent of surgical robotics. These systems, making possible to get through the difficulties of endoscopic surgery, allow an improved surgical performance and a better quality of the intervention. Information technology contributed to this evolution since the beginning of the digital revolution: providing innovative medical imaging devices and computer assisted surgical systems. Afterwards, the progresses in computer graphics brought innovative visualization modalities for medical datasets, and later the birth virtual reality has paved the way for virtual surgery. Although many surgical simulators already exist, there are no patient specific solutions. This thesis presents the development of patient specific software systems for preoperative planning, simulation and intraoperative assistance, designed for robotic surgery: in particular for bimanual robots that are becoming the future of single port interventions. The first software application is a virtual reality simulator for this kind of surgical robots. The system has been designed to validate the initial port placement and the operative workspace for the potential application of this surgical device. Given a bimanual robot with its own geometry and kinematics, and a patient specific 3D virtual anatomy, the surgical simulator allows the surgeon to choose the optimal positioning of the robot and the access port in the abdominal wall. Additionally, it makes possible to evaluate in a virtual environment if a dexterous movability of the robot is achievable, avoiding unwanted collisions with the surrounding anatomy to prevent potential damages in the real surgical procedure. Even if the software has been designed for a specific bimanual surgical robot, it supports any open kinematic chain structure: as far as it can be described in our custom format. The robot capabilities to accomplish specific tasks can be virtually tested using the deformable models: interacting directly with the target virtual organs, trying to avoid unwanted collisions with the surrounding anatomy not involved in the intervention. Moreover, the surgical simulator has been enhanced with algorithms and data structures to integrate biomechanical parameters into virtual deformable models (based on mass-spring-damper network) of target solid organs, in order to properly reproduce the physical behaviour of the patient anatomy during the interactions. The main biomechanical parameters (Young's modulus and density) have been integrated, allowing the automatic tuning of some model network elements, such as: the node mass and the spring stiffness. The spring damping coefficient has been modeled using the Rayleigh approach. Furthermore, the developed method automatically detect the external layer, allowing the usage of both the surface and internal Young's moduli, in order to model the main parts of dense organs: the stroma and the parenchyma. Finally the model can be manually tuned to represent lesion with specific biomechanical properties. Additionally, some software modules of the simulator have been properly extended to be integrated in a patient specific computer guidance system for intraoperative navigation and assistance in robotic single port interventions. This application provides guidance functionalities working in three different modalities: passive as a surgical navigator, assistive as a guide for the single port placement and active as a tutor preventing unwanted collision during the intervention. The simulation system has beed tested by five surgeons: simulating the robot access port placemen, and evaluating the robot movability and workspace inside the patient abdomen. The tested functionalities, rated by expert surgeons, have shown good quality and performance of the simulation. Moreover, the integration of biomechanical parameters into deformable models has beed tested with various material samples. The results have shown a good visual realism ensuring the performance required by an interactive simulation. Finally, the intraoperative navigator has been tested performing a cholecystectomy on a synthetic patient mannequin, in order to evaluate: the intraoperative navigation accuracy, the network communications latency and the overall usability of the system. The tests performed demonstrated the effectiveness and the usability of the software systems developed: encouraging the introduction of the proposed solution in the clinical practice, and the implementation of further improvements. Surgical robotics will be enhanced by an advanced integration of medical images into software systems: allowing the detailed planning of surgical interventions by means of virtual surgery simulation based on patient specific biomechanical parameters. Furthermore, the advanced functionalities offered by these systems, enable surgical robots to improve the intraoperative surgical assistance: benefitting of the knowledge of the virtual patient anatomy
    corecore