45,798 research outputs found

    Exploiting Emotions in Social Interactions to Detect Online Social Communities

    Get PDF
    The rapid development of Web 2.0 allows people to be involved in online interactions more easily than before and facilitates the formation of virtual communities. Online communities exert influence on their members’ online and offline behaviors. Therefore, they are of increasing interest to researchers and business managers. Most virtual community studies consider subjects in the same Web application belong to one community. This boundary-defining method neglects subtle opinion differences among participants with similar interests. It is necessary to unveil the community structure of online participants to overcome this limitation. Previous community detection studies usually account for the structural factor of social networks to build their models. Based on the affect theory of social exchange, this research argues that emotions involved in social interactions should be considered in the community detection process. We propose a framework to extract social interactions and interaction emotions from user-generated contents and a GN-H co-training algorithm to utilize the two types of information in community detection. We show the benefit of including emotion information in community detection using simulated data. We also conduct a case study on a real-world Web forum dataset to exemplify the utility of the framework in identifying communities to support further analysis

    Supporting social innovation through visualisations of community interactions

    Get PDF
    Online communities that form through the introduction of sociotechnical platforms require significant effort to cultivate and sustain. Providing open, transparent information on community behaviour can motivate participation from community members themselves, while also providing platform administrators with detailed interaction dynamics. However, challenges arise in both understanding what information is conducive to engagement and sustainability, and then how best to represent this information to platform stakeholders. Towards a better understanding of these challenges, we present the design, implementation, and evaluation of a set of simple visualisations integrated into a Collective Awareness Platform for Social Innovation platform titled commonfare.net. We discuss the promise and challenge of bringing social innovation into the digital age, in terms of supporting sustained platform use and collective action, and how the introduction of community visualisations has been directed towards achieving this goal

    Reading the Source Code of Social Ties

    Full text link
    Though online social network research has exploded during the past years, not much thought has been given to the exploration of the nature of social links. Online interactions have been interpreted as indicative of one social process or another (e.g., status exchange or trust), often with little systematic justification regarding the relation between observed data and theoretical concept. Our research aims to breach this gap in computational social science by proposing an unsupervised, parameter-free method to discover, with high accuracy, the fundamental domains of interaction occurring in social networks. By applying this method on two online datasets different by scope and type of interaction (aNobii and Flickr) we observe the spontaneous emergence of three domains of interaction representing the exchange of status, knowledge and social support. By finding significant relations between the domains of interaction and classic social network analysis issues (e.g., tie strength, dyadic interaction over time) we show how the network of interactions induced by the extracted domains can be used as a starting point for more nuanced analysis of online social data that may one day incorporate the normative grammar of social interaction. Our methods finds applications in online social media services ranging from recommendation to visual link summarization.Comment: 10 pages, 8 figures, Proceedings of the 2014 ACM conference on Web (WebSci'14

    CIMTDetect: A Community Infused Matrix-Tensor Coupled Factorization Based Method for Fake News Detection

    Full text link
    Detecting whether a news article is fake or genuine is a crucial task in today's digital world where it's easy to create and spread a misleading news article. This is especially true of news stories shared on social media since they don't undergo any stringent journalistic checking associated with main stream media. Given the inherent human tendency to share information with their social connections at a mouse-click, fake news articles masquerading as real ones, tend to spread widely and virally. The presence of echo chambers (people sharing same beliefs) in social networks, only adds to this problem of wide-spread existence of fake news on social media. In this paper, we tackle the problem of fake news detection from social media by exploiting the very presence of echo chambers that exist within the social network of users to obtain an efficient and informative latent representation of the news article. By modeling the echo-chambers as closely-connected communities within the social network, we represent a news article as a 3-mode tensor of the structure - and propose a tensor factorization based method to encode the news article in a latent embedding space preserving the community structure. We also propose an extension of the above method, which jointly models the community and content information of the news article through a coupled matrix-tensor factorization framework. We empirically demonstrate the efficacy of our method for the task of Fake News Detection over two real-world datasets. Further, we validate the generalization of the resulting embeddings over two other auxiliary tasks, namely: \textbf{1)} News Cohort Analysis and \textbf{2)} Collaborative News Recommendation. Our proposed method outperforms appropriate baselines for both the tasks, establishing its generalization.Comment: Presented at ASONAM'1
    • …
    corecore