101 research outputs found

    Energy management system benchmarking for a remote microgrid

    Get PDF
    El presente trabajo analiza el efecto que tiene la estrategia de control adoptada en el sistema de gestión de energía de una microrred en el rendimiento económico y el impacto medioambiental asociado a su operación. Las microrredes aisladas son una solución para la electrificación de áreas remotas que debido a su localización geográfica no pueden ser conectadas a la red eléctrica. La estructura de estos sistemas permite la integración de energía proveniente de generación distribuida, principalmente renovable. El abaratamiento de los colectores fotovoltaicos, el autoconsumo y los incentivos medioambientales ofrecidos a este tipo de generación son algunos de los factores que impulsan la adopción de este tipo de redes. Sin embargo, los retos técnicos asociados a las microrredes con un alto índice de penetración renovable hacen necesario un sistema de gestión de la energía que se adapte a las necesidades del sistema. Asimismo, para garantizar un suministro eléctrico de calidad e ininterrumpido, es necesario el uso de sistemas de almacenamiento eléctrico, que el sistema de control debería gestionar adecuadamente tomando en consideración las previsiones de la demanda y solares. Como caso de estudio se ha tomado la isla Isabela, situada en el archipiélago de Galápagos al oeste de Ecuador. A partir de octubre de 2017 esta isla contará con un sistema eléctrico conformado por 922 kW de generación solar, 1625 kW de generación térmica y un sistema de almacenamiento de baterías Ion-Litio de 258kWh de capacidad. A través de la simulación de tres estrategias de control se pretende analizar qué controlador se adapta mejor a las necesidades del sistema.This documents analyses the effect the control strategy followed by the energy management system of a microgrid has on is economic performance and the environmental impact associated to its operation. Isolated microgrids appear as a solution to the electrification of remote communities that due to their geographical location cannot be connected to the main grid. The architecture of this systems enables the integration of electricity generated from distributed energy resources, in particular renewable generation. The decrease in prices of solar PV collectors, self consumption and the economic incentives given to clean energy generation in many countries are pushing forward the adoption of this kind of electrical grids. However, the challenges associated to the operation of microgrids with a high index of renewable penetration require an energy management system that is designed around the specific needs of the system. Moreover, in order to guarantee the quality and continuity of the supply, the use os energy storage systems is necessary, which will need to be managed appropriately by the energy management system, taking into account the demand predictions and the solar forecast. The island Isabela, which belongs to the Galapagos archipelago located west from Ecuador, has been taken as a case study. From October 2017 the islands electrical system will from an energy mix of 922 kW solar PV,1625 kW diesel generators and a 258 kWh Lithium-Ion batteries storage system. Through the simulation of three control strategies the aim is to determine which controller is most suitable for the control operation of the island.Ingeniería de la Energí

    Best Environmental Management Practice in the Telecommunications and ICT Services sector: Learning from front runners

    Get PDF
    The steady growth over the past decades of the Telecommunications and ICT Services sector, and its uninterrupted progress with the constant provision of renewed and ever-faster services as well as new applications, has transformed many aspects of our society and lives but has also spurred the development of ever more power- and resource-hungry systems, contributing to the sector’s ever-growing environmental footprint. On the basis of an in-depth analysis of the actions implemented by environmental front runners and of existing EU and industry initiatives addressing the environmental performance of the sector, this report describes a set of best practices with high potential for larger uptake. These are called Best Environmental Management Practices (BEMPs). The BEMPs, identified in close cooperation with a technical working group comprising experts from the sector, cover improvement of environmental performance across all significant environmental aspects (energy consumption, resource consumption, etc.) at the different life cycle stages (planning and design, installation, operation, end-of-life management, etc.) and for different ICT assets (software, data centres, etc.). Besides actions aimed at reducing the environmental impact of Telecommunications and ICT Services operations (with a special focus on data centres and telecommunications networks), the report also identifies best practices in the ICT sector that contribute towards reducing the environmental impact of other sectors of the economy ("greening by ICT" measures). The report gives a wide range of information (environmental benefits, economics, indicators, benchmarks, references, etc.) for each of the proposed best practices in order to be a source of inspiration and guidance for any company in the sector wishing to improve its environmental performance. In addition, it will be the technical basis for a Sectoral Reference Document on Best Environmental Management Practice for the Telecommunications and ICT Services sector, to be produced by the European Commission according to Article 46 of Regulation (EC) No 1221/2009 (EMAS Regulation).JRC.B.5-Circular Economy and Industrial Leadershi

    DC Networks on the Distribution Level – New Trend or Vision?

    Get PDF
    "DC networks on Distribution Level – are they a new trend or a Vision?" That is the question that has focused the efforts of the Working Group the last two years, and whose consideration is summarized in this report. This report represents the first phase evaluation of this topic and is focused primarily on medium (MVDC) and low voltage (LVDC) level applications

    Multi-agent system based active distribution networks

    Get PDF
    This thesis gives a particular vision of the future power delivery system with its main requirements. An investigation of suitable concepts and technologies which creates a road map forward the smart grid has been carried out. They should meet the requirements on sustainability, efficiency, flexibility and intelligence. The so called Active Distribution Network (ADN) is introduced as an important element of the future power delivery system. With an open architecture, the ADN is designed to integrate various types of networks, i.e., MicroGrid or Autonomous Network, and different forms of operation, i.e., islanding or interconnection. By enabling an additional local control layer, these so called cells are able to reconfigure, manage local faults, support voltage regulation, or manage power flow. Furthermore, the Multi-Agent System (MAS) concept is regarded as a potential technology to cope with the anticipated challenges of future grid operation. Analysis of benefits and challenges of implementing MAS shows that it is a suitable technology for a complex and highly dynamic operation and open architecture as the ADN. By taking advantages of the MAS technology, the AND is expected to fully enable distributed monitoring and control functions. This MAS-based ADN focuses mainly on control strategies and communication topologies for the distribution systems. The transition to the proposed concept does not require an intensive physical change to the existing infrastructure. The main point is that inside the MAS-based ADN, loads and generators interact with each other and the outside world. This infrastructure can be built up of several cells (local areas) that are able to operate autonomously by an additional agent-based control layer. The ADN adapts a MAS hierarchical control structure in which each agent handles three functional layers of management, coordination, and execution. In the operational structure, the ADN addresses two main function parts: Distributed State Estimation (DSE) to analyze the network topology, compute the state estimation, and detect bad data; and Local Control Scheduling (LCS) to establish the control set points for voltage coordination and power flow management. Under the distributed context of the controls, an appropriate method for DSE is proposed. The method takes advantage of the MAS technology to compute iteratively the local state variables through neighbor data measurements. Although using the classical Weighted Least Square (WLS) as a core, the proposed algorithm based on an agent environment distributes drastically computation burden to subtasks of state estimation with only two interactive buses and an interconnection line in between. The accuracy and complexity of the proposed estimation are investigated through both off-line and on-line simulations. Distributed and parallel working of processors improves significantly the computation time. This estimation is also suitable for a meshed configuration of the ADN, which includes more than one interconnection between each pair of the cells. Depending on the availability of a communication infrastructure, it is able to work locally inside the cells or globally for the whole ADN. As a part of the LCS, the voltage control function is investigated in both steady-state and dynamic environments. The autonomous voltage control within each network area (cell) can be deployed by a combination of active and reactive power support of distributed generation (DG). The coordinated voltage control defines the optimal tap setting of the on-load tap changer (OLTC) while comparing amounts of control actions in each area. Based on the sensitivity factors, these negotiations are thoroughly supported in the distributed environment of the MAS platform. To verify the proposed method, both steady-state and dynamic simulations are developed. Simulation results show that the proposed function helps to integrate more DG while mitigating voltage violation effectively. The optimal solution can be reached within a small number of calculation iterations. It opens a possibility to apply the proposed method as an on-line application. Furthermore, a distributed approach for the power flow management function is developed. By converting the power network to a represented graph, the optimal power flow is understood as the well-known minimum cost flow problem. Two fundamental solutions for the minimum cost flow, i.e., the Successive Shortest Path (SSP) algorithm and the Cost-Scaling Push-Relabel (CS-PR) algorithm, are introduced. The SSP algorithm is augmenting the power flow along the shortest path until reaching the capacity of at least one edge. After updating the flow, it finds another shortest path and augments the flow again. The CS-PR algorithm approaches the problem in a different way which is scaling cost and pushing as much flow as possible at each active node. Simulations of both meshed and radial test networks are developed to compare their performances in various network conditions. Simulation results show that the two methods can allow both generation and power flow controller devices to operate optimally. In the radial test network, the CS-PR needs less computation effort represented by a number of exchanged messages among the MAS platform than the SSP. Their performances in the meshed network are, however, almost the same. Last but not least, this novel concept of MAS-based AND is verified under a laboratory environment. The lab set-up separates some local network areas by using a three-inverter system. The MAS platform is created on different computers and is able to retrieve data from and to hardware components, i.e., the three-inverter system. In this set-up, a configuration of the power router is established in a combination of the three-inverter system with the MAS platform. Three control functions of the inverters, AC voltage control, DC bus voltage control, and PQ control, are developed in a Simulink diagram. By assigning suitable operation modes for the inverters, the set-up successfully experiments on synchronizing and disconnecting a cell to the rest of the grid. In the MAS platform, an obvious power routing strategy is executed to optimally manage power flow in the lab set-up. The results show that the proposed concept of the ADN with the power router interface works well and can be used to manage electrical networks with distributed generation and controllable loads, leading to active networks

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial

    Resource Allocation and Positioning of Power-Autonomous Portable Access Points

    Get PDF

    Sustainable Smart Cities and Smart Villages Research

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [There is ever more research on smart cities and new interdisciplinary approaches proposed on the study of smart cities. At the same time, problems pertinent to communities inhabiting rural areas are being addressed, as part of discussions in contigious fields of research, be it environmental studies, sociology, or agriculture. Even if rural areas and countryside communities have previously been a subject of concern for robust policy frameworks, such as the European Union’s Cohesion Policy and Common Agricultural Policy Arguably, the concept of ‘the village’ has been largely absent in the debate. As a result, when advances in sophisticated information and communication technology (ICT) led to the emergence of a rich body of research on smart cities, the application and usability of ICT in the context of a village has remained underdiscussed in the literature. Against this backdrop, this volume delivers on four objectives. It delineates the conceptual boundaries of the concept of ‘smart village’. It highlights in which ways ‘smart village’ is distinct from ‘smart city’. It examines in which ways smart cities research can enrich smart villages research. It sheds light on the smart village research agenda as it unfolds in European and global contexts.

    Data analytics for mobile traffic in 5G networks using machine learning techniques

    Get PDF
    This thesis collects the research works I pursued as Ph.D. candidate at the Universitat Politecnica de Catalunya (UPC). Most of the work has been accomplished at the Mobile Network Department Centre Tecnologic de Telecomunicacions de Catalunya (CTTC). The main topic of my research is the study of mobile network traffic through the analysis of operative networks dataset using machine learning techniques. Understanding first the actual network deployments is fundamental for next-generation network (5G) for improving the performance and Quality of Service (QoS) of the users. The work starts from the collection of a novel type of dataset, using an over-the-air monitoring tool, that allows to extract the control information from the radio-link channel, without harming the users’ identities. The subsequent analysis comprehends a statistical characterization of the traffic and the derivation of prediction models for the network traffic. A wide group of algorithms are implemented and compared, in order to identify the highest performances. Moreover, the thesis addresses a set of applications in the context mobile networks that are prerogatives in the future mobile networks. This includes the detection of urban anomalies, the user classification based on the demanded network services, the design of a proactive wake-up scheme for efficient-energy devices.Esta tesis recoge los trabajos de investigación que realicé como Ph.D. candidato a la Universitat Politecnica de Catalunya (UPC). La mayor parte del trabajo se ha realizado en el Centro Tecnológico de Telecomunicaciones de Catalunya (CTTC) del Departamento de Redes Móviles. El tema principal de mi investigación es el estudio del tráfico de la red móvil a través del análisis del conjunto de datos de redes operativas utilizando técnicas de aprendizaje automático. Comprender primero las implementaciones de red reales es fundamental para la red de próxima generación (5G) para mejorar el rendimiento y la calidad de servicio (QoS) de los usuarios. El trabajo comienza con la recopilación de un nuevo tipo de conjunto de datos, utilizando una herramienta de monitoreo por aire, que permite extraer la información de control del canal de radioenlace, sin dañar las identidades de los usuarios. El análisis posterior comprende una caracterización estadística del tráfico y la derivación de modelos de predicción para el tráfico de red. Se implementa y compara un amplio grupo de algoritmos para identificar los rendimientos más altos. Además, la tesis aborda un conjunto de aplicaciones en el contexto de redes móviles que son prerrogativas en las redes móviles futuras. Esto incluye la detección de anomalías urbanas, la clasificación de usuarios basada en los servicios de red demandados, el diseño de un esquema de activación proactiva para dispositivos de energía eficiente.Postprint (published version
    corecore