1,175 research outputs found

    Modelling Net Primary Productivity and Above-Ground Biomass for Mapping of Spatial Biomass Distribution in Kazakhstan

    Get PDF
    Biomass is an important ecological variable for understanding the responses of vegetation to the currently observed global change. The impact of changes in vegetation biomass on the global ecosystem is also of high relevance. The vegetation in the arid and semi-arid environments of Kazakhstan is expected to be affected particularly strongly by future climate change. Therefore, it is of great interest to observe large-scale vegetation dynamics and biomass distribution in Kazakhstan. At the beginning of this dissertation, previous research activities and remote-sensing-based methods for biomass estimation in semi-arid regions have been comprehensively reviewed for the first time. The review revealed that the biggest challenge is the transferability of methods in time and space. Empirical approaches, which are predominantly applied, proved to be hardly transferable. Remote-sensing-based Net Primary Productivity (NPP) models, on the other hand, allow for regional to continental modelling of NPP time-series and are potentially transferable to new regions. This thesis thus deals with modelling and analysis of NPP time-series for Kazakhstan and presents a methodological concept for derivation of above-ground biomass estimates based on NPP data. For validation of the results, biomass field data were collected in three study areas in Kazakhstan. For the selection of an appropriate model, two remote-sensing-based NPP models were applied to a study area in Central Kazakhstan. The first is the Regional Biomass Model (RBM). The second is the Biosphere Energy Transfer Hydrology Model (BETHY/DLR). Both models were applied to Kazakhstan for the first time in this dissertation. Differences in the modelling approaches, intermediate products, and calculated NPP, as well as their temporal characteristics were analysed and discussed. The model BETHY/DLR was then used to calculate NPP for Kazakhstan for 2003–2011. The results were analysed regarding spatial, intra-annual, and inter-annual variations. In addition, the correlation between NPP and meteorological parameters was analysed. In the last part of this dissertation, a methodological concept for derivation of above-ground biomass estimates of natural vegetation from NPP time-series has been developed. The concept is based on the NPP time-series, information about fractional cover of herbaceous and woody vegetation, and plants’ relative growth rates (RGRs). It has been the first time that these parameters are combined for biomass estimation in semi-arid regions. The developed approach was finally applied to estimate biomass for the three study areas in Kazakhstan and validated with field data. The results of this dissertation provide information about the vegetation dynamics in Kazakhstan for 2003–2011. This is valuable information for a sustainable land management and the identification of regions that are potentially affected by a changing climate. Furthermore, a methodological concept for the estimation of biomass based on NPP time-series is presented. The developed method is potentially transferable. Providing that the required information regarding vegetation distribution and fractional cover is available, the method will allow for repeated and large-area biomass estimation for natural vegetation in Kazakhstan and other semi-arid environments

    Soil erosion in the Alps : causes and risk assessment

    Get PDF
    The issue of soil erosion in the Alps has long been neglected due to the low economic value of the agricultural land. However, soil stability is a key parameter which affects ecosystem services like slope stability, water budgets (drinking water reservoirs as well as flood prevention), vegetation productivity, ecosystem biodiversity and nutrient production. In alpine regions, spatial estimates on soil erosion are difficult to derive because the highly heterogeneous biogeophysical structure impedes measurement of soil erosion and the applicability of soil erosion models. However, remote sensing and geographic information system (GIS) methods allow for spatial estimation of soil erosion by direct detection of erosion features and supply of input data for soil erosion models. Thus, the main objective of this work is to address the problem of soil erosion risk assessment in the Alps on catchment scale with remote sensing and GIS tools. Regarding soil erosion processes the focus is on soil erosion by water (here sheet erosion) and gravity (here landslides). For these two processes we address i) the monitoring and mapping of the erosion features and related causal factors ii) soil erosion risk assessment with special emphasis on iii) the validation of existing models for alpine areas. All investigations were accomplished in the Urseren Valley (Central Swiss Alps) where the valley slopes are dramatically affected by sheet erosion and landslides. For landslides, a natural susceptibility of the catchment has been indicated by bivariate and multivariate statistical analysis. Geology, slope and stream density are the most significant static landslide causal factors. Static factors are here defined as factors that do not change their attributes during the considered time span of the study (45 years), e.g. geology, stream network. The occurrence of landslides might be significantly increased by the combined effects of global climate and land use change. Thus, our hypothesis is that more recent changes in land use and climate affected the spatial and temporal occurrence of landslides. The increase of the landslide area of 92% within 45 years in the study site confirmed our hypothesis. In order to identify the cause for the trend in landslide occurrence time-series of landslide causal factors were analysed. The analysis revealed increasing trends in the frequency and intensity of extreme rainfall events and stocking of pasture animals. These developments presumably enhanced landslide hazard. Moreover, changes in land-cover and land use were shown to have affected landslide occurrence. For instance, abandoned areas and areas with recently emerging shrub vegetation show very low landslide densities. Detailed spatial analysis of the land use with GIS and interviews with farmers confirmed the strong influence of the land use management practises on slope stability. The definite identification and quantification of the impact of these non-stationary landslide causal factors (dynamic factors) on the landslide trend was not possible due to the simultaneous change of several factors. The consideration of dynamic factors in statistical landslide susceptibility assessments is still unsolved. The latter may lead to erroneous model predictions, especially in times of dramatic environmental change. Thus, we evaluated the effect of dynamic landslide causal factors on the validity of landslide susceptibility maps for spatial and temporal predictions. For this purpose, a logistic regression model based on data of the year 2000 was set up. The resulting landslide susceptibility map was valid for spatial predictions. However, the model failed to predict the landslides that occurred in a subsequent event. In order to handle this weakness of statistic landslide modelling a multitemporal approach was developed. It is based on establishing logistic regression models for two points in time (here 1959 and 2000). Both models could correctly classify >70% of the independent spatial validation dataset. By subtracting the 1959 susceptibility map from the 2000 susceptibility map a deviation susceptibility map was obtained. Our interpretation was that these susceptibility deviations indicate the effect of dynamic causal factors on the landslide probability. The deviation map explained 85% of new independent landslides occurring after 2000. Thus, we believe it to be a suitable tool to add a time element to a susceptibility map pointing to areas with changing susceptibility due to recently changing environmental conditions or human interactions. In contrast to landslides that are a direct threat to buildings and infrastructure, sheet erosion attracts less attention because it is often an unseen process. Nonetheless, sheet erosion may account for a major proportion of soil loss. Soil loss by sheet erosion is related to high spatial variability, however, in contrast to arable fields for alpine grasslands erosion damages are long lasting and visible over longer time periods. A crucial erosion triggering parameter that can be derived from satellite imagery is fractional vegetation cover (FVC). Measurements of the radiogenic isotope Cs-137, which is a common tracer for soil erosion, confirm the importance of FVC for soil erosion yield in alpine areas. Linear spectral unmixing (LSU), mixture tuned matched filtering (MTMF) and the spectral index NDVI are applied for estimating fractional abundance of vegetation and bare soil. To account for the small scale heterogeneity of the alpine landscape very high resolved multispectral QuickBird imagery is used. The performance of LSU and MTMF for estimating percent vegetation cover is good (r²=0.85, r²=0.71 respectively). A poorer performance is achieved for bare soil (r²=0.28, r²=0.39 respectively) because compared to vegetation, bare soil has a less characteristic spectral signature in the wavelength domain detected by the QuickBird sensor. Apart from monitoring erosion controlling factors, quantification of soil erosion by applying soil erosion risk models is done. The performance of the two established models Universal Soil Loss Equation (USLE) and Pan-European Soil Erosion Risk Assessment (PESERA) for their suitability to model erosion for mountain environments is tested. Cs-137 is used to verify the resulting erosion rates from USLE and PESERA. PESERA yields no correlation to measured Cs-137 long term erosion rates and shows lower sensitivity to FVC. Thus, USLE is used to model the entire study site. The LSU-derived FVC map is used to adapt the C factor of the USLE. Compared to the low erosion rates computed with the former available low resolution dataset (1:25000) the satellite supported USLE map shows “hotspots” of soil erosion of up to 16 t ha-1 a-1. In general, Cs-137 in combination with the USLE is a very suitable method to assess soil erosion for larger areas, as both give estimates on long-term soil erosion. Especially for inaccessible alpine areas, GIS and remote sensing proved to be powerful tools that can be used for repetitive measurements of erosion features and causal factors. In times of global change it is of crucial importance to account for temporal developments. However, the evaluation of the applied soil erosion risk models revealed that the implementation of temporal aspects, such as varying climate, land use and vegetation cover is still insufficient. Thus, the proposed validation strategies (spatial, temporal and via Cs-137) are essential. Further case studies in alpine regions are needed to test the methods elaborated for the Urseren Valley. However, the presented approaches are promising with respect to improve the monitoring and identification of soil erosion risk areas in alpine regions

    Physically-based parameterization of spatially variable soil and vegetation using satellite multispectral data

    Get PDF
    A stochastic-geometric landsurface reflectance model is formulated and tested for the parameterization of spatially variable vegetation and soil at subpixel scales using satellite multispectral images without ground truth. Landscapes are conceptualized as 3-D Lambertian reflecting surfaces consisting of plant canopies, represented by solid geometric figures, superposed on a flat soil background. A computer simulation program is developed to investigate image characteristics at various spatial aggregations representative of satellite observational scales, or pixels. The evolution of the shape and structure of the red-infrared space, or scattergram, of typical semivegetated scenes is investigated by sequentially introducing model variables into the simulation. The analytical moments of the total pixel reflectance, including the mean, variance, spatial covariance, and cross-spectral covariance, are derived in terms of the moments of the individual fractional cover and reflectance components. The moments are applied to the solution of the inverse problem: The estimation of subpixel landscape properties on a pixel-by-pixel basis, given only one multispectral image and limited assumptions on the structure of the landscape. The landsurface reflectance model and inversion technique are tested using actual aerial radiometric data collected over regularly spaced pecan trees, and using both aerial and LANDSAT Thematic Mapper data obtained over discontinuous, randomly spaced conifer canopies in a natural forested watershed. Different amounts of solar backscattered diffuse radiation are assumed and the sensitivity of the estimated landsurface parameters to those amounts is examined

    Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data

    Get PDF
    ReviewThe current study aims at reviewing and providing advances on methods for estimating and applying crop coefficients from observations of ground cover and vegetation height. The review first focuses on the relationships between single Kc and basal Kcb and various parameters including the fraction of ground covered by the canopy (fc), the leaf area index (LAI), the fraction of ground shaded by the canopy (fshad), the fraction of intercepted light (flight) and intercepted photosynthetic active radiation (fIPAR). These relationships were first studied in the 1970’s, for annual crops, and later, in the last decennia, for tree and vine perennials. Research has now provided a variety of methods to observe and measure fc and height (h) using both ground and remote sensing tools, which has favored the further development of Kc related functions. In the past, these relationships were not used predictively but to support the understanding of dynamics of Kc and Kcb in relation to the processes of evapotranspiration or transpiration, inclusive of the role of soil evaporation. Later, the approach proposed by Allen and Pereira (2009), the A&P approach, used fc and height (h) or LAI data to define a crop density coefficient that was used to directly estimate Kc and Kcb values for a variety of annual and perennial crops in both research and practice. It is opportune to review the A&P method in the context of a variety of studies that have derived Kc and Kcb values from field measured data with simultaneously observed ground cover fc and height. Applications used to test the approach include various tree and vine crops (olive, pear, and lemon orchards and vineyards), vegetable crops (pea, onion and tomato crops), field crops (barley, wheat, maize, sunflower, canola, cotton and soybean crops), as well as a grassland and a Bermudagrass pasture. Comparisons of Kcb values computed with the A &P method produced regression coefficients close to 1.0 and coefficients of determination≥0.90, except for orchards. Results indicate that the A&P approach can produce estimates of potential Kcb, using vegetation characteristics alone, within reasonable or acceptable error, and are useful for refining Kcb for conditions of plant spacing, size and density that differ from standard values. The comparisons provide parameters appropriate to applications for the tested crops. In addition, the A&P approach was applied with remotely sensed fc data for a variety of crops in California using the Satellite Irrigation Management Support (SIMS) framework. Daily SIMS crop ET (ETc-SIMS) produced Kcb values using the FAO56 and A&P approaches. Combination of satellite derived fc and Kcb values with ETo data from Spatial CIMIS (California Irrigation Management Information System) produced ET estimates that were compared with daily actual crop ET derived from energy balance calculations from micrometeorological instrumentation (ETc EB).Results produced coefficients of regression of 1.05 for field crops and 1.08 for woody crops, and R2 values of 0.81 and 0.91, respectively. These values suggest that daily ETc-SIMS -based ET can be accurately estimated within reasonable error and that the A&P approach is appropriate to support that estimation. It is likely that accuracy can be improved via progress in remote sensing determination of fc. Tabulated Kcb results and calculation parameters are presented in a companion paper in this Special Issueinfo:eu-repo/semantics/publishedVersio

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Towards a better understanding of land surface exchange processes over agricultural crop stands

    Get PDF
    Weather and climate models are useful tools for projecting the influence of global climate change on the regional scale. These models are critically dependent on an accurate representation of soil-plant-atmosphere interactions, which are simulated by Land Surface Models (LSMs). The present PhD thesis was designed to improve the representation of land surface exchange processes of croplands in the Noah-MP land surface model. This thesis aims: a) to elucidate the nature of the energy imbalance over a winter wheat stand and to identify the appropriate post-closure method for the study region Kraichgau, southwest Germany; b) to improve the representation of the green vegetation fraction (GVF) dynamics of croplands in the Noah-MP for a more accurate computation of surface energy and water fluxes; and c) to determine the effect of aggregating different crop types with various shares into a single generic cropland class on the simulation of water and energy exchange between land surface and atmosphere.Wetter- und Klimamodelle sind nützliche Werkzeuge, um den Einfluss des globalen Klimawandels auf die regionale Ebene zu projizieren. Diese Modelle sind entscheidend von einer genauen Darstellung der Wechselwirkungen zwischen Boden, Pflanzen und Atmosphäre abhängig, welche durch Land Surface Models (LSMs) simuliert werden. Die Dissertation wurde erstellt, um die Darstellung von Landoberflächenaustauschprozessen von Ackerland im Noah-MP-Landoberflächenmodell zu verbessern. In Doktorarbeit geht es um: a) die Art des Energieungleichgewichts über einem Winterweizenbestand aufzuklären und die geeignete Post- Closure-Methode für die Region Kraichgau (Südwestdeutschland) zu identifizieren; b) die Darstellung der Dynamik der Grünen Vegetationsfraktion (GVF) von Anbauflächen im Noah-MP für eine genauere Berechnung der Oberflächenenergie und der Wasserflüsse zu verbessern; und c) um die Auswirkungen der Aggregation verschiedener Kulturarten mit unterschiedlichen Anteilen zu einer einzigen generischen Ackerflächenklasse auf die Simulation des Wasser- und Energieaustauschs zwischen Landoberfläche und Atmosphäre zu bestimmen

    Agricultural scene understanding and supporting field research, volume 1

    Get PDF
    There are no author-identified significant results in this report

    Investigating the Potential of UAV-Based Low-Cost Camera Imagery for Measuring Biophysical Variables in Maize

    Get PDF
    The potential for improved crop productivity is readily investigated in agronomic field experiments. Frequent measurements of biophysical crop variables are necessary to allow for confident statements on crop performance. Commonly, in-field measurements are tedious, labour-intensive, costly and spatially selective and therefore pose a challenge in field experiments. With the versatile, flexible employment of the platform and the high spatial and temporal resolution of the sensor data, Unmanned Aerial Vehicle (UAV)-based remote sensing offers the possibility to derive variables quickly, contactless and at low cost. This thesis examined if UAV-borne modified low-cost camera imagery allowed for remote estimation of the crop variables green leaf area index (gLAI) and radiation use efficiency (RUE) in a maize field trial under different management influences. For this, a field experiment was established at the university's research station Campus Klein-Altendorf southwest of Bonn in the years 2015 and 2016. In four treatments (two levels of nitrogen fertilisation and two levels of plant density) with five repetitions each, leaf growth of maize plants was supposed to occur differently. gLAI and biomass was measured destructively, UAV-based data was acquired in 14-day intervals over the entire experiment. Three studies were conducted and submitted for peer-review in international journals. In study I, three selected spectral vegetation indices (NDVI, GNDVI, 3BSI) were related to the gLAI measurements. Differing but definite relationships per treatment factor were found. gLAI estimation using the two-band indices (NDVI, GNDVI) yielded good results up to gLAI values of 3. The 3-bands approach (3BSI) did not provide improved accuracies. Comparing gLAI results to the spectral vegetation indices, it was determined that sole reliance on these was insufficient to draw the right conclusions on the impact of management factors on leaf area development in maize canopies. Study II evaluated parametric and non-parametric regression methods on their capability to estimate gLAI in maize, relying on UAV-based low-cost camera imagery with non-plants pixels (i.e. shaded and illuminated soil background) a) included in and b) excluded from the analysis. With regard to the parametric regression methods, all possible band combinations for a selected number of two- and three-band formulations as well as different fitting functions were tested. With regard to non-parametric methods, six regression algorithms (Random Forests Regression, Support Vector Regression, Relevance Vector Machines, Gaussian Process Regression, Kernel Regularized Least Squares, Extreme Learning Machine) were tested. It was found that all non-parametric methods performed better than the parametric methods, and that kernel-based algorithms outperformed the other tested algorithms. Excluding non-plant pixels from the analysis deteriorated models' performances. When using parametric regression methods, signal saturation occurred at gLAI values of about 3, and at values around 4 when employing non-parametric methods. Study III investigated if a) UAV-based low-cost camera imagery allowed estimating RUEs in different experimental plots where maize was cultivated in the growing season of 2016, b) those values were different from the ones previously reported in literature and c) there was a difference between RUEtotal and RUEgreen. Fractional cover and canopy reflectance was determined based on the RS imagery. Our study showed that RUEtotal ranges between 4.05 and 4.59, and RUEgreen between 4.11 and 4.65. These values were higher than those published in other research articles, but not outside the range of plausibility. The difference between RUEtotal and RUEgreen was minimal, possibly due to prolonged canopy greenness induced by the stay-green trait of the cultivar grown. In conclusion, UAV-based low-cost camera imagery allows for estimation of plant variables within a range of limitations

    Land Surface Temperature Patterns in the Urban Agglomeration of Krakow (Poland) Derived from Landsat-7/ETM+ Data

    Get PDF
    The aim of this study was to identify typical and specific features of land surface temperature (LST) distribution in the city of Krakow and its surroundings with the use of Landsat/ETM+ data. The paper contains a detailed description of the study area and technical properties of the Landsat program and data, as well as a complete methodology of LST retrieval. Retrieved LST records have been standardized in order to ensure comparability between satellite images acquired during different seasons. The method also enables identification of characteristic thermal regions, i.e. areas always colder and always warmer than a zonal mean LST value for Krakow. The research includes spatial analysis of the standardized LST with regard to different land cover types. Basic zonal statistics such as mean standardized LST and percentage share of hot and cold regions within 10 land cover types were calculated. GIS was used for automated data processing and mapping. The results confirmed the most obvious dependence of the LST on different land cover types. Some more factors influencing the LST were recognized on the basis of detailed investigation of the LST pattern in the urban agglomeration of Krakow. The factors are: emission of anthropogenic heat, insolation of the surfaces depending first of all on land relief and shape of buildings, seasonal changes of vegetation and weather conditions at the time of satellite image acquisition
    corecore