389 research outputs found

    Variable-Angle Phase-Shifted PWM for Multilevel Three-Cell Cascaded H-bridge Converters

    Get PDF
    Multilevel cascaded H-bridge converters have become a mature technology for applications where high-power medium ac voltages are required. Normal operation of multilevel cascaded H-bridge converters assumes that all power cells have the same dc voltage, and each power cell generates the same voltage averaged over a sampling period using a conventional phase-shifted pulse width modulation (PWM) technique. However, this modulation method does not achieve good results under unbalanced operation per H-bridge in the power converter, which may happen in grid-connected applications such as photovoltaic or battery energy storage systems. In the paper, a simplified mathematical analysis of the phase-shifted PWM technique is presented. In addition, a modification of this conventional modulation method using variable shift angles between the power cells is introduced. This modification leads to the elimination of harmonic distortion of low-order harmonics due to the switching (triangular carrier frequency and its multiples) even under unbalanced operational conditions. The analysis is particularized for a three-cell cascaded H-bridge converter, and experimental results are presented to demonstrate the good performance of the proposed modulation method

    Active Harmonic Elimination in Multilevel Converters

    Get PDF
    The modulation technique for multilevel converters is a key issue for multilevel converter control. The traditional pulse width modulation (PWM), space vector PWM, and space vector control methods do not completely eliminate specified harmonics. In addition, space vector PWM and space vector control method cannot be applied to multilevel converters with unequal DC voltages. The carrier phase shifting method for traditional PWM method also requires equal DC voltages. The number of harmonics that can be eliminated by the selective harmonic elimination method is restricted by the number of unknowns in the harmonic equations and available solutions. For these reasons, this thesis develops a new modulation control method which is referred to as the active harmonic elimination method to conquer some disadvantages for the existing methods. The active harmonic elimination method contributes to the existing methods because it not only generates the desired fundamental frequency voltage, but also completely eliminates any number of harmonics without the restriction of the number of unknowns in the harmonic equations and available solutions for the harmonic equations. Also the active harmonic elimination method can be applied to both equal DC voltage cases and unequal DC voltage cases. Another contribution of the active harmonic elimination method is that it simplifies the optimal system performance searching by making a tradeoff between switching frequency and harmonic distortion. Experiments on an 11-level multilevel converter validate the active harmonic elimination method for multilevel converters

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Design and Application of Hybrid Multilevel Inverter for Voltage Boost

    Get PDF
    Today many efforts are made to research and use new energy sources because the potential for an energy crisis is increasing. Multilevel converters have gained much attention in the area of energy distribution and control due to its advantages in high power applications with low harmonics. They not only achieve high power ratings, but also enable the use of renewable energy sources. The general function of the multilevel converter is to synthesize a desired high voltage from several levels of dc voltages that can be batteries, fuel cells, etc. This dissertation presents a new hybrid multilevel inverter for voltage boost. The inverter consists of a standard 3-leg inverter (one leg for each phase) and H-bridge in series with each inverter leg. It can use only a single DC power source to supply a standard 3-leg inverter along with three full H-bridges supplied by capacitors or batteries. The proposed inverter could be applied in hybrid electric vehicles (HEVs) and fuel cell based hybrid electric vehicles (FCVs). It is of voltage boosting capability and eliminates the magnetics. This feature makes it suitable for the motor running from low to high power mode. In addition to hybrid electric vehicle applications, this paper also presents an application where the hybrid multilevel inverter acts as a renewable energy utility interface. In this dissertation, the structure, operation principle, and modulation control schemes of the proposed hybrid multilevel inverter are introduced. Simulation models and results are described and analyzed. An experimental 5 kW prototype inverter is built and tested

    Experimental verification of trinary DC source cascaded H-bridge multilevel inverter using unipolar pulse width modulation

    Get PDF
    Multilevel inverters (MLIs) are an imperative solution for high power and high voltage applications. The MLIs can be classified into two categories such as symmetric and asymmetric. The asymmetric type MLIs has large number of output voltage steps with less number of input DC voltage sources and switching devices. In this paper, a single phase asymmetric (trinary sequence DC source) Cascaded H-Bridge MLI has been developed using unipolar PWM control schemes. The topology can produce 27-level output voltage with the help of 12 switches and 3 DC sources. It has been examined with a diverse combination of multicarrier unipolar PWM control. The PWM control includes Phase Disposition (PDPWM), Alternative Opposition Disposition (APODPWM), Carrier overlapping (COPWM), and Variable Frequency (VFPWM). The harmonic content of output voltage for each technique has been observed with different modulation indices. The demonstration of proposed topology for generating 27-level output voltage has been tested through simulation in MATLAB-SIMULINK and verified with laboratory-based experimental setup. From the results, it is evident that the APODPWM offers quality output voltage with relatively low harmonic distortion. Also, it has been observed that COPWM performance is superior since it delivers relatively higher fundamental RMS output voltage

    A comparative study of capacitor voltage balancing techniques for flying capacitor multi-level power electronic converters

    Get PDF
    With the advent of multilevel converters for high power applications in industry, a need to develop simpler topologies and control techniques has arisen. The flying capacitor multilevel inverter (FCMLI) is one such topology which is gaining popularity in recent years with many advantages such as extra ride-through capabilities because of the capacitor storage, redundancy in switching states, low common mode voltage ratio, improved power quality, etc. In this thesis, different basic multilevel converter topologies and their advantages and applications are discussed. The thesis mainly focuses on single-phase five-level FCMLI topology. Different control techniques for capacitor voltage regulation like staircase modulation, and PWM techniques including phase disposition PWM (PDPWM), and natural balancing technique are implemented. The disadvantages of these methods are discussed. To overcome these, a new method called the split natural balancing technique which is based on the Unipolar PWM method is proposed in this thesis. In addition, a feedback control technique called amplitude modulation adjustment (AMA) method is devised to regulate the voltage across capacitors around the desired value irrespective of their initial values. Harmonic analysis of the output voltage for all the implemented methods is performed and compared --Abstract, page iii

    The Age of Multilevel Converters Arrives

    Get PDF
    This work is devoted to review and analyze the most relevant characteristics of multilevel converters, to motivate possible solutions, and to show that we are in a decisive instant in which energy companies have to bet on these converters as a good solution compared with classic two-level converters. This article presents a brief overview of the actual applications of multilevel converters and provides an introduction of the modeling techniques and the most common modulation strategies. It also addresses the operational and technological issues

    A Reduced Switch Asymmetric Multilevel Inverter Topology Using Unipolar Pulse Width Modulation Strategies for Photovoltaic Application

    Get PDF
    A new design of multilevel inverter configuration is proposed for reducing the component count and improving the quality of waveform in a photovoltaic system. The proposed configuration operates at the binary asymmetric condition for generating the large amount output voltage level with small amount harmonic distortion. Unipolar trapezoidal reference with triangular carriers is used for generating the desired switching pulses to generate the required output voltage level. The proposed configuration requires eight unipolar switches for generating the 31-level output voltage level with total harmonic distortion of 3.18% without using any filters. The value of %total harmonic distortion (THD) satisfies the IEEE 519 harmonic standard. Separate DC sources of proposed configuration are replaced by the array of photovoltaic panels for testing the configuration with the renewable energy source. The proposed configuration is tested with an experimental setup for proving the operation of it. Selected simulation and experimental results are shown for the verification of proposed configuration ability

    A comprehensive review on modular multilevel converters, submodule topologies, and modulation techniques

    Get PDF
    The concept of the modular multilevel converter (MLC) has been raising interest in research in order to improve their performance and applicability. The potential of an MLC is enormous, with a great focus on medium- and high-voltage applications, such as solar photovoltaic and wind farms, electrified railway systems, or power distribution systems. This concept makes it possible to overcome the limitation of the semiconductors blocking voltages, presenting advantageous characteristics. However, the complexity of implementation and control presents added challenges. Thus, this paper aims to contribute with a critical and comparative analysis of the state-of-the-art aspects of this concept in order to maximize its potential. In this paper, different power electronics converter topologies that can be integrated into the MLC concept are presented, highlighting the advantages and disadvantages of each topology. Nevertheless, different modulation techniques used in an MLC are also presented and analyzed. Computational simulations of all the modulation techniques under analysis were developed, based on four cascaded full-bridge topologies. Considering the simulation results, a comparative analysis was possible to make regarding the symmetry of the synthesized waveforms, the harmonic content, and the power distribution in each submodule constituting the MLC.This work has been supported by FCT—Fundação para a Ciência e Tecnologia, within the R&D Units Project Scope UIDB/00319/2020. Mr. Luis A. M. Barros is supported by the doctoral scholarship PD/BD/143006/2018, granted by the Portuguese FCT foundation

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future
    corecore