205 research outputs found

    Prioritized motion-force control of constrained fully-actuated robots: "Task Space Inverse Dynamics"

    Get PDF
    Pre-print submitted to "Robotics and Autonomous Systems"We present a new framework for prioritized multi-task motion-force control of fully-actuated robots. This work is established on a careful review and comparison of the state of the art. Some control frameworks are not optimal, that is they do not find the optimal solution for the secondary tasks. Other frameworks are optimal, but they tackle the control problem at kinematic level, hence they neglect the robot dynamics and they do not allow for force control. Still other frameworks are optimal and consider force control, but they are computationally less efficient than ours. Our final claim is that, for fully-actuated robots, computing the operational-space inverse dynamics is equivalent to computing the inverse kinematics (at acceleration level) and then the joint-space inverse dynamics. Thanks to this fact, our control framework can efficiently compute the optimal solution by decoupling kinematics and dynamics of the robot. We take into account: motion and force control, soft and rigid contacts, free and constrained robots. Tests in simulation validate our control framework, comparing it with other state-of-the-art equivalent frameworks and showing remarkable improvements in optimality and efficiency

    Task-Priority Control of Redundant Robotic Systems using Control Lyapunov and Control Barrier Function based Quadratic Programs

    Full text link
    This paper presents a novel task-priority control framework for redundant robotic systems based on a hierarchy of control Lyapunov function (CLF) and control barrier function (CBF) based quadratic programs (QPs). The proposed method guarantees strict priority among different groups of tasks such as safety-related, operational and optimization tasks. Moreover, a soft priority measure in the form of penalty parameters can be employed to prioritize tasks at the same priority level. As opposed to kinematic control schemes, the proposed framework is a holistic approach to control of redundant robotic systems, which solves the redundancy resolution, dynamic control and control allocation problems simultaneously. Numerical simulations of a hyper-redundant articulated intervention autonomous underwater vehicle (AIAUV) is presented to validate the proposed framework.Comment: 21st IFAC World Congres

    Toward a computational theory for motion understanding: The expert animators model

    Get PDF
    Artificial intelligence researchers claim to understand some aspect of human intelligence when their model is able to emulate it. In the context of computer graphics, the ability to go from motion representation to convincing animation should accordingly be treated not simply as a trick for computer graphics programmers but as important epistemological and methodological goal. In this paper we investigate a unifying model for animating a group of articulated bodies such as humans and robots in a three-dimensional environment. The proposed model is considered in the framework of knowledge representation and processing, with special reference to motion knowledge. The model is meant to help setting the basis for a computational theory for motion understanding applied to articulated bodies

    Effects of Dynamic Model Errors in Task-Priority Operational Space Control

    Get PDF
    Control algorithms of many Degrees Of Freedom (DOFs) systems based on Inverse Kinematics or Inverse Dynamics approaches are two well-known topics of research in robotics. The large number of DOFs allows the design of many concurrent tasks arranged in priorities, that can be solved either at kinematic or dynamic level. This paper investigates the effects of modeling errors in operational space control algorithms with respect to uncertainties affecting knowledge of the dynamic parameters. The effects on the null-space projections and the sources of steady-state errors are investigated. Numerical simulations with on-purpose injected errors are used to validate the thoughts

    Riemannian geometry as a unifying theory for robot motion learning and control

    Full text link
    Riemannian geometry is a mathematical field which has been the cornerstone of revolutionary scientific discoveries such as the theory of general relativity. Despite early uses in robot design and recent applications for exploiting data with specific geometries, it mostly remains overlooked in robotics. With this blue sky paper, we argue that Riemannian geometry provides the most suitable tools to analyze and generate well-coordinated, energy-efficient motions of robots with many degrees of freedom. Via preliminary solutions and novel research directions, we discuss how Riemannian geometry may be leveraged to design and combine physically-meaningful synergies for robotics, and how this theory also opens the door to coupling motion synergies with perceptual inputs.Comment: Published as a blue sky paper at ISRR'22. 8 pages, 2 figures. Video at https://youtu.be/XblzcKRRIT
    corecore