39,479 research outputs found

    Bandit Models of Human Behavior: Reward Processing in Mental Disorders

    Full text link
    Drawing an inspiration from behavioral studies of human decision making, we propose here a general parametric framework for multi-armed bandit problem, which extends the standard Thompson Sampling approach to incorporate reward processing biases associated with several neurological and psychiatric conditions, including Parkinson's and Alzheimer's diseases, attention-deficit/hyperactivity disorder (ADHD), addiction, and chronic pain. We demonstrate empirically that the proposed parametric approach can often outperform the baseline Thompson Sampling on a variety of datasets. Moreover, from the behavioral modeling perspective, our parametric framework can be viewed as a first step towards a unifying computational model capturing reward processing abnormalities across multiple mental conditions.Comment: Conference on Artificial General Intelligence, AGI-1

    Multi-agent knowledge integration mechanism using particle swarm optimization

    Get PDF
    This is the post-print version of the final paper published in Technological Forecasting and Social Change. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.Unstructured group decision-making is burdened with several central difficulties: unifying the knowledge of multiple experts in an unbiased manner and computational inefficiencies. In addition, a proper means of storing such unified knowledge for later use has not yet been established. Storage difficulties stem from of the integration of the logic underlying multiple experts' decision-making processes and the structured quantification of the impact of each opinion on the final product. To address these difficulties, this paper proposes a novel approach called the multiple agent-based knowledge integration mechanism (MAKIM), in which a fuzzy cognitive map (FCM) is used as a knowledge representation and storage vehicle. In this approach, we use particle swarm optimization (PSO) to adjust causal relationships and causality coefficients from the perspective of global optimization. Once an optimized FCM is constructed an agent based model (ABM) is applied to the inference of the FCM to solve real world problem. The final aggregate knowledge is stored in FCM form and is used to produce proper inference results for other target problems. To test the validity of our approach, we applied MAKIM to a real-world group decision-making problem, an IT project risk assessment, and found MAKIM to be statistically robust.Ministry of Education, Science and Technology (Korea

    Hierarchical control over effortful behavior by rodent medial frontal cortex : a computational model

    Get PDF
    The anterior cingulate cortex (ACC) has been the focus of intense research interest in recent years. Although separate theories relate ACC function variously to conflict monitoring, reward processing, action selection, decision making, and more, damage to the ACC mostly spares performance on tasks that exercise these functions, indicating that they are not in fact unique to the ACC. Further, most theories do not address the most salient consequence of ACC damage: impoverished action generation in the presence of normal motor ability. In this study we develop a computational model of the rodent medial prefrontal cortex that accounts for the behavioral sequelae of ACC damage, unifies many of the cognitive functions attributed to it, and provides a solution to an outstanding question in cognitive control research-how the control system determines and motivates what tasks to perform. The theory derives from recent developments in the formal study of hierarchical control and learning that highlight computational efficiencies afforded when collections of actions are represented based on their conjoint goals. According to this position, the ACC utilizes reward information to select tasks that are then accomplished through top-down control over action selection by the striatum. Computational simulations capture animal lesion data that implicate the medial prefrontal cortex in regulating physical and cognitive effort. Overall, this theory provides a unifying theoretical framework for understanding the ACC in terms of the pivotal role it plays in the hierarchical organization of effortful behavior

    Decision-Making under Bounded Rationality and Model Uncertainty: an Information-Theoretic Approach

    Get PDF
    Artificial intelligence research and high computational power have recently led to break- throughs in solving high-dimensional reinforcement learning and sequential decision-making problems. The foundations of these advances rely on the classical theory of choice under uncer- tainty, the so-called Subjective Expected Utility (SEU) theory. However, SEU theory assumes two important unrealistic scenarios. First, it disregards computational limitations when mak- ing decisions by assuming perfectly rational agents i.e. agents with unlimited computational resources. Importantly, humans and artificial agents are bounded rational, or equivalently, they suffer from precision and computational limitations. Second, SEU theory assumes that the internal models employed for computation can be fully trusted and that they do not suffer from model uncertainty. However, any model of the environment is inherently incorrect and thus it should not be fully trusted. Therefore, humans and artificial agents are indeed subject to model uncertainty. This thesis consists of an experimental and a theoretical part. On the experimental side, I aimed to explain human sensorimotor behavior with information-theoretic models of bounded rationality and model uncertainty. In particular, we designed three experiments where we expose human subjects to decision-making scenarios involving model uncertainty. We dis- cover that human decision-making behavior can be explained by information-theoretic models that manifest as risk-sensitive and ambiguity-sensitive models. On the theoretical part, we developed a novel planning algorithm for sequential decision-making that accounts for both, information-processing constraints and model uncertainty. Finally, we examined and extended bounded rational models of decision-making under precision and time limitations whose we drew analogies with non-equilibrium thermodynamics. This non-equilibrium thermodynam- ical point of view allowed to connect decision-making with concepts such as dissipation and time-reversibility, and to discover novel relations connecting equilibrium with non-equilibrium decision-making. In conclusion, information-theoretic models of decision-making might be the missing cor- nerstone towards unifying principles of decision-making able to explain complex behavior beyond classic expected-utility models

    Towards a Quantum-Like Cognitive Architecture for Decision-Making

    Full text link
    We propose an alternative and unifying framework for decision-making that, by using quantum mechanics, provides more generalised cognitive and decision models with the ability to represent more information than classical models. This framework can accommodate and predict several cognitive biases reported in Lieder & Griffiths without heavy reliance on heuristics nor on assumptions of the computational resources of the mind

    Econometrics: A Bird’s Eye View

    Get PDF
    As a unified discipline, econometrics is still relatively young and has been transforming and expanding very rapidly over the past few decades. Major advances have taken place in the analysis of cross sectional data by means of semi-parametric and non-parametric techniques. Heterogeneity of economic relations across individuals, firms and industries is increasingly acknowledged and attempts have been made to take them into account either by integrating out their effects or by modeling the sources of heterogeneity when suitable panel data exists. The counterfactual considerations that underlie policy analysis and treatment evaluation have been given a more satisfactory foundation. New time series econometric techniques have been developed and employed extensively in the areas of macroeconometrics and finance. Non-linear econometric techniques are used increasingly in the analysis of cross section and time series observations. Applications of Bayesian techniques to econometric problems have been given new impetus largely thanks to advances in computer power and computational techniques. The use of Bayesian techniques have in turn provided the investigators with a unifying framework where the tasks of forecasting, decision making, model evaluation and learning can be considered as parts of the same interactive and iterative process; thus paving the way for establishing the foundation of “real time econometrics”. This paper attempts to provide an overview of some of these developments.history of econometrics, microeconometrics, macroeconometrics, Bayesian econometrics, nonparametric and semi-parametric analysis
    • …
    corecore