986 research outputs found

    Avoiding Abelian powers in binary words with bounded Abelian complexity

    Full text link
    The notion of Abelian complexity of infinite words was recently used by the three last authors to investigate various Abelian properties of words. In particular, using van der Waerden's theorem, they proved that if a word avoids Abelian kk-powers for some integer kk, then its Abelian complexity is unbounded. This suggests the following question: How frequently do Abelian kk-powers occur in a word having bounded Abelian complexity? In particular, does every uniformly recurrent word having bounded Abelian complexity begin in an Abelian kk-power? While this is true for various classes of uniformly recurrent words, including for example the class of all Sturmian words, in this paper we show the existence of uniformly recurrent binary words, having bounded Abelian complexity, which admit an infinite number of suffixes which do not begin in an Abelian square. We also show that the shift orbit closure of any infinite binary overlap-free word contains a word which avoids Abelian cubes in the beginning. We also consider the effect of morphisms on Abelian complexity and show that the morphic image of a word having bounded Abelian complexity has bounded Abelian complexity. Finally, we give an open problem on avoidability of Abelian squares in infinite binary words and show that it is equivalent to a well-known open problem of Pirillo-Varricchio and Halbeisen-Hungerb\"uhler.Comment: 16 pages, submitte

    Binary Patterns in Binary Cube-Free Words: Avoidability and Growth

    Get PDF
    The avoidability of binary patterns by binary cube-free words is investigated and the exact bound between unavoidable and avoidable patterns is found. All avoidable patterns are shown to be D0L-avoidable. For avoidable patterns, the growth rates of the avoiding languages are studied. All such languages, except for the overlap-free language, are proved to have exponential growth. The exact growth rates of languages avoiding minimal avoidable patterns are approximated through computer-assisted upper bounds. Finally, a new example of a pattern-avoiding language of polynomial growth is given.Comment: 18 pages, 2 tables; submitted to RAIRO TIA (Special issue of Mons Days 2012

    The Pagoda Sequence: a Ramble through Linear Complexity, Number Walls, D0L Sequences, Finite State Automata, and Aperiodic Tilings

    Full text link
    We review the concept of the number wall as an alternative to the traditional linear complexity profile (LCP), and sketch the relationship to other topics such as linear feedback shift-register (LFSR) and context-free Lindenmayer (D0L) sequences. A remarkable ternary analogue of the Thue-Morse sequence is introduced having deficiency 2 modulo 3, and this property verified via the re-interpretation of the number wall as an aperiodic plane tiling

    Abelian repetitions in partial words

    Get PDF
    AbstractWe study abelian repetitions in partial words, or sequences that may contain some unknown positions or holes. First, we look at the avoidance of abelian pth powers in infinite partial words, where p>2, extending recent results regarding the case where p=2. We investigate, for a given p, the smallest alphabet size needed to construct an infinite partial word with finitely or infinitely many holes that avoids abelian pth powers. We construct in particular an infinite binary partial word with infinitely many holes that avoids 6th powers. Then we show, in a number of cases, that the number of abelian p-free partial words of length n with h holes over a given alphabet grows exponentially as n increases. Finally, we prove that we cannot avoid abelian pth powers under arbitrary insertion of holes in an infinite word
    • …
    corecore