727 research outputs found

    FocalDreamer: Text-driven 3D Editing via Focal-fusion Assembly

    Full text link
    While text-3D editing has made significant strides in leveraging score distillation sampling, emerging approaches still fall short in delivering separable, precise and consistent outcomes that are vital to content creation. In response, we introduce FocalDreamer, a framework that merges base shape with editable parts according to text prompts for fine-grained editing within desired regions. Specifically, equipped with geometry union and dual-path rendering, FocalDreamer assembles independent 3D parts into a complete object, tailored for convenient instance reuse and part-wise control. We propose geometric focal loss and style consistency regularization, which encourage focal fusion and congruent overall appearance. Furthermore, FocalDreamer generates high-fidelity geometry and PBR textures which are compatible with widely-used graphics engines. Extensive experiments have highlighted the superior editing capabilities of FocalDreamer in both quantitative and qualitative evaluations.Comment: Project website: https://focaldreamer.github.i

    Unwind: Interactive Fish Straightening

    Full text link
    The ScanAllFish project is a large-scale effort to scan all the world's 33,100 known species of fishes. It has already generated thousands of volumetric CT scans of fish species which are available on open access platforms such as the Open Science Framework. To achieve a scanning rate required for a project of this magnitude, many specimens are grouped together into a single tube and scanned all at once. The resulting data contain many fish which are often bent and twisted to fit into the scanner. Our system, Unwind, is a novel interactive visualization and processing tool which extracts, unbends, and untwists volumetric images of fish with minimal user interaction. Our approach enables scientists to interactively unwarp these volumes to remove the undesired torque and bending using a piecewise-linear skeleton extracted by averaging isosurfaces of a harmonic function connecting the head and tail of each fish. The result is a volumetric dataset of a individual, straight fish in a canonical pose defined by the marine biologist expert user. We have developed Unwind in collaboration with a team of marine biologists: Our system has been deployed in their labs, and is presently being used for dataset construction, biomechanical analysis, and the generation of figures for scientific publication

    Calipso: Physics-based Image and Video Editing through CAD Model Proxies

    Get PDF
    We present Calipso, an interactive method for editing images and videos in a physically-coherent manner. Our main idea is to realize physics-based manipulations by running a full physics simulation on proxy geometries given by non-rigidly aligned CAD models. Running these simulations allows us to apply new, unseen forces to move or deform selected objects, change physical parameters such as mass or elasticity, or even add entire new objects that interact with the rest of the underlying scene. In Calipso, the user makes edits directly in 3D; these edits are processed by the simulation and then transfered to the target 2D content using shape-to-image correspondences in a photo-realistic rendering process. To align the CAD models, we introduce an efficient CAD-to-image alignment procedure that jointly minimizes for rigid and non-rigid alignment while preserving the high-level structure of the input shape. Moreover, the user can choose to exploit image flow to estimate scene motion, producing coherent physical behavior with ambient dynamics. We demonstrate Calipso's physics-based editing on a wide range of examples producing myriad physical behavior while preserving geometric and visual consistency.Comment: 11 page

    XVoxel-Based Parametric Design Optimization of Feature Models

    Full text link
    Parametric optimization is an important product design technique, especially in the context of the modern parametric feature-based CAD paradigm. Realizing its full potential, however, requires a closed loop between CAD and CAE (i.e., CAD/CAE integration) with automatic design modifications and simulation updates. Conventionally the approach of model conversion is often employed to form the loop, but this way of working is hard to automate and requires manual inputs. As a result, the overall optimization process is too laborious to be acceptable. To address this issue, a new method for parametric optimization is introduced in this paper, based on a unified model representation scheme called eXtended Voxels (XVoxels). This scheme hybridizes feature models and voxel models into a new concept of semantic voxels, where the voxel part is responsible for FEM solving, and the semantic part is responsible for high-level information to capture both design and simulation intents. As such, it can establish a direct mapping between design models and analysis models, which in turn enables automatic updates on simulation results for design modifications, and vice versa -- effectively a closed loop between CAD and CAE. In addition, robust and efficient geometric algorithms for manipulating XVoxel models and efficient numerical methods (based on the recent finite cell method) for simulating XVoxel models are provided. The presented method has been validated by a series of case studies of increasing complexity to demonstrate its effectiveness. In particular, a computational efficiency improvement of up to 55.8 times the existing FCM method has been seen.Comment: 22 page

    Dynamic Multivariate Simplex Splines For Volume Representation And Modeling

    Get PDF
    Volume representation and modeling of heterogeneous objects acquired from real world are very challenging research tasks and playing fundamental roles in many potential applications, e.g., volume reconstruction, volume simulation and volume registration. In order to accurately and efficiently represent and model the real-world objects, this dissertation proposes an integrated computational framework based on dynamic multivariate simplex splines (DMSS) that can greatly improve the accuracy and efficacy of modeling and simulation of heterogenous objects. The framework can not only reconstruct with high accuracy geometric, material, and other quantities associated with heterogeneous real-world models, but also simulate the complicated dynamics precisely by tightly coupling these physical properties into simulation. The integration of geometric modeling and material modeling is the key to the success of representation and modeling of real-world objects. The proposed framework has been successfully applied to multiple research areas, such as volume reconstruction and visualization, nonrigid volume registration, and physically based modeling and simulation

    NeRF-editing: geometry editing of neural radiance fields

    Get PDF
    Implicit neural rendering, especially Neural Radiance Field (NeRF), has shown great potential in novel view synthesis of a scene. However, current NeRF-based methods cannot enable users to perform user-controlled shape deformation in the scene. While existing works have proposed some approaches to modify the radiance field according to the user's constraints, the modification is limited to color editing or object translation and rotation. In this paper, we propose a method that allows users to perform controllable shape deformation on the implicit representation of the scene, and synthesizes the novel view images of the edited scene without re-training the network. Specifically, we establish a correspondence between the extracted explicit mesh representation and the implicit neural representation of the target scene. Users can first utilize well-developed mesh-based deformation methods to deform the mesh representation of the scene. Our method then utilizes user edits from the mesh representation to bend the camera rays by introducing a tetrahedra mesh as a proxy, obtaining the rendering results of the edited scene. Extensive experiments demonstrate that our framework can achieve ideal editing results not only on synthetic data, but also on real scenes captured by users

    Doctor of Philosophy in Computing

    Get PDF
    dissertationPhysics-based animation has proven to be a powerful tool for creating compelling animations for film and games. Most techniques in graphics are based on methods developed for predictive simulation for engineering applications; however, the goals for graphics applications are dramatically different than the goals of engineering applications. As a result, most physics-based animation tools are difficult for artists to work with, providing little direct control over simulation results. In this thesis, we describe tools for physics-based animation designed with artist needs and expertise in mind. Most materials can be modeled as elastoplastic: they recover from small deformations, but large deformations permanently alter their rest shape. Unfortunately, large plastic deformations, common in graphical applications, cause simulation instabilities if not addressed. Most elastoplastic simulation techniques in graphics rely on a finite-element approach where objects are discretized into a tetrahedral mesh. Using these approaches, maintaining simulation stability during large plastic flows requires remeshing, a complex and computationally expensive process. We introduce a new point-based approach that does not rely on an explicit mesh and avoids the expense of remeshing. Our approach produces comparable results with much lower implementation complexity. Points are a ubiquitous primitive for many effects, so our approach also integrates well with existing artist pipelines. Next, we introduce a new technique for animating stylized images which we call Dynamic Sprites. Artists can use our tool to create digital assets that interact in a natural, but stylized, way in virtual environments. In order to support the types of nonphysical, exaggerated motions often desired by artists, our approach relies on a heavily modified deformable body simulator, equipped with a set of new intuitive controls and an example-based deformation model. Our approach allows artists to specify how the shape of the object should change as it moves and collides in interactive virtual environments. Finally, we introduce a new technique for animating destructive scenes. Our approach is built on the insight that the most important visual aspects of destruction are plastic deformation and fracture. Like with Dynamic Sprites, we use an example-based model of deformation for intuitive artist control. Our simulator treats objects as rigid when computing dynamics but allows them to deform plastically and fracture in between timesteps based on interactions with the other objects. We demonstrate that our approach can efficiently animate the types of destructive scenes common in film and games. These animation techniques are designed to exploit artist expertise to ease creation of complex animations. By using artist-friendly primitives and allowing artists to provide characteristic deformations as input, our techniques enable artists to create more compelling animations, more easily

    A Revisit of Shape Editing Techniques: from the Geometric to the Neural Viewpoint

    Get PDF
    3D shape editing is widely used in a range of applications such as movie production, computer games and computer aided design. It is also a popular research topic in computer graphics and computer vision. In past decades, researchers have developed a series of editing methods to make the editing process faster, more robust, and more reliable. Traditionally, the deformed shape is determined by the optimal transformation and weights for an energy term. With increasing availability of 3D shapes on the Internet, data-driven methods were proposed to improve the editing results. More recently as the deep neural networks became popular, many deep learning based editing methods have been developed in this field, which is naturally data-driven. We mainly survey recent research works from the geometric viewpoint to those emerging neural deformation techniques and categorize them into organic shape editing methods and man-made model editing methods. Both traditional methods and recent neural network based methods are reviewed
    corecore