7,992 research outputs found

    A Unified Scheme for Two-Receiver Broadcast Channels with Receiver Message Side Information

    Full text link
    This paper investigates the capacity regions of two-receiver broadcast channels where each receiver (i) has both common and private-message requests, and (ii) knows part of the private message requested by the other receiver as side information. We first propose a transmission scheme and derive an inner bound for the two-receiver memoryless broadcast channel. We next prove that this inner bound is tight for the deterministic channel and the more capable channel, thereby establishing their capacity regions. We show that this inner bound is also tight for all classes of two-receiver broadcast channels whose capacity regions were known prior to this work. Our proposed scheme is consequently a unified capacity-achieving scheme for these classes of broadcast channels.Comment: accepted and to be presented at the 2015 IEEE International Symposium on Information Theory (ISIT 2015

    Optimal Coding Schemes for the Three-Receiver AWGN Broadcast Channel with Receiver Message Side Information

    Full text link
    This paper investigates the capacity region of the three-receiver AWGN broadcast channel where the receivers (i) have private-message requests and (ii) may know some of the messages requested by other receivers as side information. We first classify all 64 possible side information configurations into eight groups, each consisting of eight members. We next construct transmission schemes, and derive new inner and outer bounds for the groups. This establishes the capacity region for 52 out of 64 possible side information configurations. For six groups (i.e., groups 1, 2, 3, 5, 6, and 8 in our terminology), we establish the capacity region for all their members, and show that it tightens both the best known inner and outer bounds. For group 4, our inner and outer bounds tighten the best known inner bound and/or outer bound for all the group members. Moreover, our bounds coincide at certain regions, which can be characterized by two thresholds. For group 7, our inner and outer bounds coincide for four members, thereby establishing the capacity region. For the remaining four members, our bounds tighten both the best known inner and outer bounds.Comment: Authors' final version (to appear in IEEE Transactions on Information Theory

    Joint Network and Gelfand-Pinsker Coding for 3-Receiver Gaussian Broadcast Channels with Receiver Message Side Information

    Full text link
    The problem of characterizing the capacity region for Gaussian broadcast channels with receiver message side information appears difficult and remains open for N >= 3 receivers. This paper proposes a joint network and Gelfand-Pinsker coding method for 3-receiver cases. Using the method, we establish a unified inner bound on the capacity region of 3-receiver Gaussian broadcast channels under general message side information configuration. The achievability proof of the inner bound uses an idea of joint interference cancelation, where interference is canceled by using both dirty-paper coding at the encoder and successive decoding at some of the decoders. We show that the inner bound is larger than that achieved by state of the art coding schemes. An outer bound is also established and shown to be tight in 46 out of all 64 possible cases.Comment: Author's final version (presented at the 2014 IEEE International Symposium on Information Theory [ISIT 2014]

    Joint Coding and Scheduling Optimization in Wireless Systems with Varying Delay Sensitivities

    Full text link
    Throughput and per-packet delay can present strong trade-offs that are important in the cases of delay sensitive applications.We investigate such trade-offs using a random linear network coding scheme for one or more receivers in single hop wireless packet erasure broadcast channels. We capture the delay sensitivities across different types of network applications using a class of delay metrics based on the norms of packet arrival times. With these delay metrics, we establish a unified framework to characterize the rate and delay requirements of applications and optimize system parameters. In the single receiver case, we demonstrate the trade-off between average packet delay, which we view as the inverse of throughput, and maximum ordered inter-arrival delay for various system parameters. For a single broadcast channel with multiple receivers having different delay constraints and feedback delays, we jointly optimize the coding parameters and time-division scheduling parameters at the transmitters. We formulate the optimization problem as a Generalized Geometric Program (GGP). This approach allows the transmitters to adjust adaptively the coding and scheduling parameters for efficient allocation of network resources under varying delay constraints. In the case where the receivers are served by multiple non-interfering wireless broadcast channels, the same optimization problem is formulated as a Signomial Program, which is NP-hard in general. We provide approximation methods using successive formulation of geometric programs and show the convergence of approximations.Comment: 9 pages, 10 figure

    The Capacity of Three-Receiver AWGN Broadcast Channels with Receiver Message Side Information

    Full text link
    This paper investigates the capacity region of three-receiver AWGN broadcast channels where the receivers (i) have private-message requests and (ii) know the messages requested by some other receivers as side information. We classify these channels based on their side information into eight groups, and construct different transmission schemes for the groups. For six groups, we characterize the capacity region, and show that it improves both the best known inner and outer bounds. For the remaining two groups, we improve the best known inner bound by using side information during channel decoding at the receivers.Comment: This is an extended version of the same-titled paper submitted to IEEE International Symposium on Information Theory (ISIT) 201

    Inner and Outer Bounds for the Gaussian Cognitive Interference Channel and New Capacity Results

    Full text link
    The capacity of the Gaussian cognitive interference channel, a variation of the classical two-user interference channel where one of the transmitters (referred to as cognitive) has knowledge of both messages, is known in several parameter regimes but remains unknown in general. In this paper we provide a comparative overview of this channel model as we proceed through our contributions: we present a new outer bound based on the idea of a broadcast channel with degraded message sets, and another series of outer bounds obtained by transforming the cognitive channel into channels with known capacity. We specialize the largest known inner bound derived for the discrete memoryless channel to the Gaussian noise channel and present several simplified schemes evaluated for Gaussian inputs in closed form which we use to prove a number of results. These include a new set of capacity results for the a) "primary decodes cognitive" regime, a subset of the "strong interference" regime that is not included in the "very strong interference" regime for which capacity was known, and for the b) "S-channel" in which the primary transmitter does not interfere with the cognitive receiver. Next, for a general Gaussian cognitive interference channel, we determine the capacity to within one bit/s/Hz and to within a factor two regardless of channel parameters, thus establishing rate performance guarantees at high and low SNR, respectively. We also show how different simplified transmission schemes achieve a constant gap between inner and outer bound for specific channels. Finally, we numerically evaluate and compare the various simplified achievable rate regions and outer bounds in parameter regimes where capacity is unknown, leading to further insight on the capacity region of the Gaussian cognitive interference channel.Comment: submitted to IEEE transaction of Information Theor

    Filter and nested-lattice code design for fading MIMO channels with side-information

    Full text link
    Linear-assignment Gel'fand-Pinsker coding (LA-GPC) is a coding technique for channels with interference known only at the transmitter, where the known interference is treated as side-information (SI). As a special case of LA-GPC, dirty paper coding has been shown to be able to achieve the optimal interference-free rate for interference channels with perfect channel state information at the transmitter (CSIT). In the cases where only the channel distribution information at the transmitter (CDIT) is available, LA-GPC also has good (sometimes optimal) performance in a variety of fast and slow fading SI channels. In this paper, we design the filters in nested-lattice based coding to make it achieve the same rate performance as LA-GPC in multiple-input multiple-output (MIMO) channels. Compared with the random Gaussian codebooks used in previous works, our resultant coding schemes have an algebraic structure and can be implemented in practical systems. A simulation in a slow-fading channel is also provided, and near interference-free error performance is obtained. The proposed coding schemes can serve as the fundamental building blocks to achieve the promised rate performance of MIMO Gaussian broadcast channels with CDIT or perfect CSITComment: submitted to IEEE Transactions on Communications, Feb, 200
    • …
    corecore