56 research outputs found

    A unified matheuristic for solving multi-constrained traveling salesman problems with profits

    Get PDF
    International audienceIn this paper, we address a rich Traveling Salesman Problem with Profits encountered in several real-life cases. We propose a unified solution approach based on variable neighborhood search. Our approach combines several removal and insertion routing neighborhoods and efficient constraint checking procedures. The loading problem related to the use of a multi-compartment vehicle is addressed carefully. Two loading neighborhoods based on the solution of mathematical programs are proposed to intensify the search. They interact with the routing neighborhoods as it is commonly done in matheuristics. The performance of the proposed matheuristic is assessed on various instances proposed for the Orienteer-ing Problem and the Orienteering Problem with Time Window including up to 288 customers. The computational results show that the proposed matheuristic is very competitive compared with the state-of-the-art methods. To better evaluate its performance, we generate a new testbed including instances with various attributes. Extensive computational experiments on the new testbed confirm the efficiency of the matheuristic. A sensitivity analysis highlights which components of the matheuristic contribute most to the solution quality

    Formulation and a two-phase matheuristic for the roaming salesman problem: Application to election logistics

    Get PDF
    In this paper we investigate a novel logistical problem. The goal is to determine daily tours for a traveling salesperson who collects rewards from activities in cities during a fixed campaign period. We refer to this problem as the Roaming Salesman Problem (RSP) motivated by real-world applications including election logistics, touristic trip planning and marketing campaigns. RSP can be characterized as a combination of the traditional Periodic TSP and the Prize-Collecting TSP with static arc costs and time-dependent node rewards. Commercial solvers are capable of solving small-size instances of the RSP to near optimality in a reasonable time. To tackle large-size instances we propose a two-phase matheuristic where the first phase deals with city selection while the second phase focuses on route generation. The latter capitalizes on an integer program to construct an optimal route among selected cities on a given day. The proposed matheuristic decomposes the RSP into as many subproblems as the number of campaign days. Computational results show that our approach provides near-optimal solutions in significantly shorter times compared to commercial solvers

    Spatial coverage in routing and path planning problems

    Get PDF
    Routing and path planning problems that involve spatial coverage have received increasing attention in recent years in different application areas. Spatial coverage refers to the possibility of considering nodes that are not directly served by a vehicle as visited for the purpose of the objective function or constraints. Despite similarities between the underlying problems, solution approaches have been developed in different disciplines independently, leading to different terminologies and solution techniques. This paper proposes a unified view of the approaches: Based on a formal introduction of the concept of spatial coverage in vehicle routing, it presents a classification scheme for core problem features and summarizes problem variants and solution concepts developed in the domains of operations research and robotics. The connections between these related problem classes offer insights into common underlying structures and open possibilities for developing new applications and algorithms

    FIXED RATIO POLYNOMIAL TIME APPROXIMATION ALGORITHM FOR THE PRIZE-COLLECTING ASYMMETRIC TRAVELING SALESMAN PROBLEM

    Get PDF
    We develop the first fixed-ratio approximation algorithm for the well-known Prize-Collecting Asymmetric Traveling Salesman Problem,  which has numerous valuable applications in operations research. An instance of this problem is given by a complete node- and edge-weighted digraph GG. Each node of the graph GG can either be visited by the resulting route or skipped, for some penalty, while the arcs of GG  are weighted by non-negative transportation costs that fulfill the triangle inequality constraint. The goal is to find a closed walk that minimizes the total transportation costs augmented by the accumulated penalties. We show that an arbitrary α\alpha-approximation algorithm for the Asymmetric Traveling Salesman Problem induces an (α+1)(\alpha+1)-approximation for the problem in question. In particular, using the recent (22+ε)(22+\varepsilon)-approximation algorithm of V. Traub and J. Vygen that improves the seminal result of  O. Svensson, J. Tarnavski, and L. Végh,  we obtain (23+ε)(23+\varepsilon)-approximate solutions for the problem

    A concise guide to existing and emerging vehicle routing problem variants

    Get PDF
    Vehicle routing problems have been the focus of extensive research over the past sixty years, driven by their economic importance and their theoretical interest. The diversity of applications has motivated the study of a myriad of problem variants with different attributes. In this article, we provide a concise overview of existing and emerging problem variants. Models are typically refined along three lines: considering more relevant objectives and performance metrics, integrating vehicle routing evaluations with other tactical decisions, and capturing fine-grained yet essential aspects of modern supply chains. We organize the main problem attributes within this structured framework. We discuss recent research directions and pinpoint current shortcomings, recent successes, and emerging challenges

    Vehicle routing and location routing with intermediate stops:A review

    Get PDF

    Matheuristics for solving a multi-attribute collection problem for a charity organisation

    Get PDF
    corecore