34,855 research outputs found

    Reconciling d+1 Masking in Hardware and Software

    Get PDF
    The continually growing number of security-related autonomous devices require efficient mechanisms to counteract low-cost side-channel analysis (SCA) attacks like differential power analysis. Masking provides a high resistance against SCA at an adjustable level of security. A high level of security, however, goes hand in hand with an increasing demand for fresh randomness which also affects other implementation costs. Since software based masking has other security requirements than masked hardware implementations, the research in these fields have been quite separated from each other over the last ten years. One important practical difference is that recently published software based masking schemes show a lower randomness footprint than hardware masking schemes. In this work we combine existing software and hardware based masking schemes into a unified masking approach (UMA). We demonstrate how UMA can be used to protect software and hardware implementations likewise, and for lower randomness costs especially for hardware implementations. Theoretical considerations as well as practical implementation results are then used to compare this unified masking approach to other schemes from different perspectives and at different levels of security

    SelFormaly: Towards Task-Agnostic Unified Anomaly Detection

    Full text link
    The core idea of visual anomaly detection is to learn the normality from normal images, but previous works have been developed specifically for certain tasks, leading to fragmentation among various tasks: defect detection, semantic anomaly detection, multi-class anomaly detection, and anomaly clustering. This one-task-one-model approach is resource-intensive and incurs high maintenance costs as the number of tasks increases. This paper presents SelFormaly, a universal and powerful anomaly detection framework. We emphasize the necessity of our off-the-shelf approach by pointing out a suboptimal issue with fluctuating performance in previous online encoder-based methods. In addition, we question the effectiveness of using ConvNets as previously employed in the literature and confirm that self-supervised ViTs are suitable for unified anomaly detection. We introduce back-patch masking and discover the new role of top k-ratio feature matching to achieve unified and powerful anomaly detection. Back-patch masking eliminates irrelevant regions that possibly hinder target-centric detection with representations of the scene layout. The top k-ratio feature matching unifies various anomaly levels and tasks. Finally, SelFormaly achieves state-of-the-art results across various datasets for all the aforementioned tasks.Comment: 11 pages, 7 figure

    MM-3DScene: 3D Scene Understanding by Customizing Masked Modeling with Informative-Preserved Reconstruction and Self-Distilled Consistency

    Full text link
    Masked Modeling (MM) has demonstrated widespread success in various vision challenges, by reconstructing masked visual patches. Yet, applying MM for large-scale 3D scenes remains an open problem due to the data sparsity and scene complexity. The conventional random masking paradigm used in 2D images often causes a high risk of ambiguity when recovering the masked region of 3D scenes. To this end, we propose a novel informative-preserved reconstruction, which explores local statistics to discover and preserve the representative structured points, effectively enhancing the pretext masking task for 3D scene understanding. Integrated with a progressive reconstruction manner, our method can concentrate on modeling regional geometry and enjoy less ambiguity for masked reconstruction. Besides, such scenes with progressive masking ratios can also serve to self-distill their intrinsic spatial consistency, requiring to learn the consistent representations from unmasked areas. By elegantly combining informative-preserved reconstruction on masked areas and consistency self-distillation from unmasked areas, a unified framework called MM-3DScene is yielded. We conduct comprehensive experiments on a host of downstream tasks. The consistent improvement (e.g., +6.1 [email protected] on object detection and +2.2% mIoU on semantic segmentation) demonstrates the superiority of our approach

    Masking: A New Perspective of Noisy Supervision

    Full text link
    It is important to learn various types of classifiers given training data with noisy labels. Noisy labels, in the most popular noise model hitherto, are corrupted from ground-truth labels by an unknown noise transition matrix. Thus, by estimating this matrix, classifiers can escape from overfitting those noisy labels. However, such estimation is practically difficult, due to either the indirect nature of two-step approaches, or not big enough data to afford end-to-end approaches. In this paper, we propose a human-assisted approach called Masking that conveys human cognition of invalid class transitions and naturally speculates the structure of the noise transition matrix. To this end, we derive a structure-aware probabilistic model incorporating a structure prior, and solve the challenges from structure extraction and structure alignment. Thanks to Masking, we only estimate unmasked noise transition probabilities and the burden of estimation is tremendously reduced. We conduct extensive experiments on CIFAR-10 and CIFAR-100 with three noise structures as well as the industrial-level Clothing1M with agnostic noise structure, and the results show that Masking can improve the robustness of classifiers significantly.Comment: NIPS 2018 camera-ready versio
    • …
    corecore