219 research outputs found

    Improved LEACH Protocol based on Moth Flame Optimization Algorithm for Wireless Sensor Networks

    Get PDF
    Wireless sensor nodes are made up of small electronic devices designed for detecting, determining, and sending data under severe physical conditions. These sensor nodes rely heavily on batteries for energy, which drain at a quicker pace due to the extensive communication and processing tasks they must carry out. Managing this battery resource is the major challenge in wireless sensor networks (WSNs). This work aims at developing an improved performance and energy-efficient low-energy adaptive clustering hierarchy (IPE-LEACH) that can extend the lifespan of networks. This paper proposes a novel LEACH protocol that uses the moth flame optimization (MFO) algorithm for clustering and routing to increase the longevity of the sensor network. IPE-LEACH proved to have a better cluster-head (CH) selection technique by eliminating redundant data, thereby extending the network lifetime. IPE-LEACH was compared with four other existing algorithms, and it performed better than: original LEACH by 60%, EiP-LEACH by 45%, LEACH-GA by 58%, and LEACH-PSO by 13.8%. It can therefore be concluded that IPE-LEACH is a promising clustering algorithm that has the potential to realize high flexibility in WSNs in case the CH fails.     

    The Application of Ant Colony Optimization

    Get PDF
    The application of advanced analytics in science and technology is rapidly expanding, and developing optimization technics is critical to this expansion. Instead of relying on dated procedures, researchers can reap greater rewards by utilizing cutting-edge optimization techniques like population-based metaheuristic models, which can quickly generate a solution with acceptable quality. Ant Colony Optimization (ACO) is one the most critical and widely used models among heuristics and meta-heuristics. This book discusses ACO applications in Hybrid Electric Vehicles (HEVs), multi-robot systems, wireless multi-hop networks, and preventive, predictive maintenance

    Analysis, Design And Optimization Of Energy Efficient Protocols For Wireless Sensor Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    A self-healing framework for WSNs : detection and recovery of faulty sensor nodes and unreliable wireless links

    Get PDF
    Proponemos un marco conceptual para acoplar técnicas de auto-organización y técnicas de autocuración. A este marco se le llama de auto-curación y es capaz de hacer frente a enlaces inalámbricos inestables y nodos defectuosos. Dividimos el marco en dos componentes principales: la auto-organización y auto-curación. En el componente de auto-organización, nosotros construimos una topología de árbol que determine las rutas hacia el sumidero. En el componente de auto-curación, la topología del árbol se adapta a ambos tipos de fallas siguiendo tres pasos: recopilación de información, detección de fallas, y la recuperación de fallos. En el paso de recopilación de información, los nodos determinan el estado actual de la red mediante la recopilación de información de la capa MAC. En el paso de detección de fallas, los nodos analizan la información recopilada y detectan nodos/enlaces defectuosos. En el paso de recuperación de fallos, los nodos recuperan la topología del árbol mediante la sustitución de componentes defectuosos con redundantes (es decir, componentes de respaldo). Este marco permite una red con resiliencia que se recupera sin agotar los recursos de la red.We propose a conceptual framework for putting together self-organizing and self-healing techniques. This framework is called the self-healing framework and it is capable of coping with unstable wireless links and faulty nodes. We divide the framework into two major components: selforganization and self-healing. In the self-organization component, we build a tree topology that determines routing paths towards the sink. In the self-healing component, the tree topology copes with both types of failures by following three steps: information collection, fault detection, and fault recovery. In the information collection step, the nodes determine the current status of the network by gathering information from the MAC layer. In the fault detection step, the nodes analyze the collected information and detect faulty nodes/links. In the fault recovery step, the nodes recover the tree topology by replacing the faulty components with redundant ones (i.e., backup components). This framework allows a resilient network that recovers itself without depleting the network resources.Doctor en IngenieríaDoctorad

    Smart Energy Management for Smart Grids

    Get PDF
    This book is a contribution from the authors, to share solutions for a better and sustainable power grid. Renewable energy, smart grid security and smart energy management are the main topics discussed in this book

    Enumeration, conformation sampling and population of libraries of peptide macrocycles for the search of chemotherapeutic cardioprotection agents

    Get PDF
    Peptides are uniquely endowed with features that allow them to perturb previously difficult to drug biomolecular targets. Peptide macrocycles in particular have seen a flurry of recent interest due to their enhanced bioavailability, tunability and specificity. Although these properties make them attractive hit-candidates in early stage drug discovery, knowing which peptides to pursue is non‐trivial due to the magnitude of the peptide sequence space. Computational screening approaches show promise in their ability to address the size of this search space but suffer from their inability to accurately interrogate the conformational landscape of peptide macrocycles. We developed an in‐silico compound enumerator that was tasked with populating a conformationally laden peptide virtual library. This library was then used in the search for cardio‐protective agents (that may be administered, reducing tissue damage during reperfusion after ischemia (heart attacks)). Our enumerator successfully generated a library of 15.2 billion compounds, requiring the use of compression algorithms, conformational sampling protocols and management of aggregated compute resources in the context of a local cluster. In the absence of experimental biophysical data, we performed biased sampling during alchemical molecular dynamics simulations in order to observe cyclophilin‐D perturbation by cyclosporine A and its mitochondrial targeted analogue. Reliable intermediate state averaging through a WHAM analysis of the biased dynamic pulling simulations confirmed that the cardio‐protective activity of cyclosporine A was due to its mitochondrial targeting. Paralleltempered solution molecular dynamics in combination with efficient clustering isolated the essential dynamics of a cyclic peptide scaffold. The rapid enumeration of skeletons from these essential dynamics gave rise to a conformation laden virtual library of all the 15.2 Billion unique cyclic peptides (given the limits on peptide sequence imposed). Analysis of this library showed the exact extent of physicochemical properties covered, relative to the bare scaffold precursor. Molecular docking of a subset of the virtual library against cyclophilin‐D showed significant improvements in affinity to the target (relative to cyclosporine A). The conformation laden virtual library, accessed by our methodology, provided derivatives that were able to make many interactions per peptide with the cyclophilin‐D target. Machine learning methods showed promise in the training of Support Vector Machines for synthetic feasibility prediction for this library. The synergy between enumeration and conformational sampling greatly improves the performance of this library during virtual screening, even when only a subset is used
    corecore