7,059 research outputs found

    CanICA: Model-based extraction of reproducible group-level ICA patterns from fMRI time series

    Get PDF
    Spatial Independent Component Analysis (ICA) is an increasingly used data-driven method to analyze functional Magnetic Resonance Imaging (fMRI) data. To date, it has been used to extract meaningful patterns without prior information. However, ICA is not robust to mild data variation and remains a parameter-sensitive algorithm. The validity of the extracted patterns is hard to establish, as well as the significance of differences between patterns extracted from different groups of subjects. We start from a generative model of the fMRI group data to introduce a probabilistic ICA pattern-extraction algorithm, called CanICA (Canonical ICA). Thanks to an explicit noise model and canonical correlation analysis, our method is auto-calibrated and identifies the group-reproducible data subspace before performing ICA. We compare our method to state-of-the-art multi-subject fMRI ICA methods and show that the features extracted are more reproducible

    Interaction patterns of brain activity across space, time and frequency. Part I: methods

    Full text link
    We consider exploratory methods for the discovery of cortical functional connectivity. Typically, data for the i-th subject (i=1...NS) is represented as an NVxNT matrix Xi, corresponding to brain activity sampled at NT moments in time from NV cortical voxels. A widely used method of analysis first concatenates all subjects along the temporal dimension, and then performs an independent component analysis (ICA) for estimating the common cortical patterns of functional connectivity. There exist many other interesting variations of this technique, as reviewed in [Calhoun et al. 2009 Neuroimage 45: S163-172]. We present methods for the more general problem of discovering functional connectivity occurring at all possible time lags. For this purpose, brain activity is viewed as a function of space and time, which allows the use of the relatively new techniques of functional data analysis [Ramsay & Silverman 2005: Functional data analysis. New York: Springer]. In essence, our method first vectorizes the data from each subject, which constitutes the natural discrete representation of a function of several variables, followed by concatenation of all subjects. The singular value decomposition (SVD), as well as the ICA of this new matrix of dimension [rows=(NT*NV); columns=NS] will reveal spatio-temporal patterns of connectivity. As a further example, in the case of EEG neuroimaging, Xi of size NVxNW may represent spectral density for electric neuronal activity at NW discrete frequencies from NV cortical voxels, from the i-th EEG epoch. In this case our functional data analysis approach would reveal coupling of brain regions at possibly different frequencies.Comment: Technical report 2011-March-15, The KEY Institute for Brain-Mind Research Zurich, KMU Osak

    A group model for stable multi-subject ICA on fMRI datasets

    Get PDF
    Spatial Independent Component Analysis (ICA) is an increasingly used data-driven method to analyze functional Magnetic Resonance Imaging (fMRI) data. To date, it has been used to extract sets of mutually correlated brain regions without prior information on the time course of these regions. Some of these sets of regions, interpreted as functional networks, have recently been used to provide markers of brain diseases and open the road to paradigm-free population comparisons. Such group studies raise the question of modeling subject variability within ICA: how can the patterns representative of a group be modeled and estimated via ICA for reliable inter-group comparisons? In this paper, we propose a hierarchical model for patterns in multi-subject fMRI datasets, akin to mixed-effect group models used in linear-model-based analysis. We introduce an estimation procedure, CanICA (Canonical ICA), based on i) probabilistic dimension reduction of the individual data, ii) canonical correlation analysis to identify a data subspace common to the group iii) ICA-based pattern extraction. In addition, we introduce a procedure based on cross-validation to quantify the stability of ICA patterns at the level of the group. We compare our method with state-of-the-art multi-subject fMRI ICA methods and show that the features extracted using our procedure are more reproducible at the group level on two datasets of 12 healthy controls: a resting-state and a functional localizer study

    Modeling Covariate Effects in Group Independent Component Analysis with Applications to Functional Magnetic Resonance Imaging

    Full text link
    Independent component analysis (ICA) is a powerful computational tool for separating independent source signals from their linear mixtures. ICA has been widely applied in neuroimaging studies to identify and characterize underlying brain functional networks. An important goal in such studies is to assess the effects of subjects' clinical and demographic covariates on the spatial distributions of the functional networks. Currently, covariate effects are not incorporated in existing group ICA decomposition methods. Hence, they can only be evaluated through ad-hoc approaches which may not be accurate in many cases. In this paper, we propose a hierarchical covariate ICA model that provides a formal statistical framework for estimating and testing covariate effects in ICA decomposition. A maximum likelihood method is proposed for estimating the covariate ICA model. We develop two expectation-maximization (EM) algorithms to obtain maximum likelihood estimates. The first is an exact EM algorithm, which has analytically tractable E-step and M-step. Additionally, we propose a subspace-based approximate EM, which can significantly reduce computational time while still retain high model-fitting accuracy. Furthermore, to test covariate effects on the functional networks, we develop a voxel-wise approximate inference procedure which eliminates the needs of computationally expensive covariance estimation. The performance of the proposed methods is evaluated via simulation studies. The application is illustrated through an fMRI study of Zen meditation.Comment: 36 pages, 5 figure
    corecore