1,560 research outputs found

    A Kernel-based Approach to Diffusion Tensor and Fiber Clustering in the Human Skeletal Muscle

    Get PDF
    In this report, we present a kernel-based approach to the clustering of diffusion tensors in images of the human skeletal muscle. Based on the physical intuition of tensors as a means to represent the uncertainty of the position of water protons in the tissues, we propose a Mercer (i.e. positive definite) kernel over the tensor space where both spatial and diffusion information are taken into account. This kernel highlights implicitly the connectivity along fiber tracts. We show that using this kernel in a kernel-PCA setting compounded with a landmark-Isomap embedding and k-means clustering provides a tractable framework for tensor clustering. We extend this kernel to deal with fiber tracts as input using the multi-instance kernel by considering the fiber as set of tensors centered in the sampled points of the tract. The obtained kernel reflects not only interactions between points along fiber tracts, but also the interactions between diffusion tensors. We give an interpretation of the obtained kernel as a comparison of soft fiber representations and show that it amounts to a generalization of the Gaussian kernel Correlation. As in the tensor case, we use the kernel-PCA setting and k-means for grouping of fiber tracts. This unsupervised method is further extended by way of an atlas-based registration of diffusion-free images, followed by a classification of fibers based on non-linear kernel Support Vector Machines (SVMs) and kernel diffusion. The experimental results on a dataset of diffusion tensor images of the calf muscle of 25 patients (of which 5 affected by myopathies, i.e. neuromuscular diseases) show the potential of our method in segmenting the calf in anatomically relevant regions both at the tensor and fiber level

    Unsupervised White Matter Fiber Clustering and Tract Probability Map Generation: Applications of a Gaussian Process framework for White Matter Fibers

    Get PDF
    With the increasing importance of fiber tracking in diffusion tensor images for clinical needs, there has been a growing demand for an objective mathematical framework to perform quantitative analysis of white matter fiber bundles incorporating their underlying physical significance. This paper presents such a novel mathematical framework that facilitates mathematical operations between tracts using an inner product based on Gaussian processes, between fibers which span a metric space. This metric facilitates combination of fiber tracts, rendering operations like tract membership to a bundle or bundle similarity simple. Based on this framework, we have designed an automated unsupervised atlas-based clustering method that does not require manual initialization nor an a priori knowledge of the number of clusters. Quantitative analysis can now be performed on the clustered tract volumes across subjects thereby avoiding the need for point parametrization of these fibers, or the use of medial or envelope representations as in previous work. Experiments on synthetic data demonstrate the mathematical operations. Subsequently, the applicability of the unsupervised clustering framework has been demonstrated on a 21 subject dataset

    MODELING AND QUANTITATIVE ANALYSIS OF WHITE MATTER FIBER TRACTS IN DIFFUSION TENSOR IMAGING

    Get PDF
    Diffusion tensor imaging (DTI) is a structural magnetic resonance imaging (MRI) technique to record incoherent motion of water molecules and has been used to detect micro structural white matter alterations in clinical studies to explore certain brain disorders. A variety of DTI based techniques for detecting brain disorders and facilitating clinical group analysis have been developed in the past few years. However, there are two crucial issues that have great impacts on the performance of those algorithms. One is that brain neural pathways appear in complicated 3D structures which are inappropriate and inaccurate to be approximated by simple 2D structures, while the other involves the computational efficiency in classifying white matter tracts. The first key area that this dissertation focuses on is to implement a novel computing scheme for estimating regional white matter alterations along neural pathways in 3D space. The mechanism of the proposed method relies on white matter tractography and geodesic distance mapping. We propose a mask scheme to overcome the difficulty to reconstruct thin tract bundles. Real DTI data are employed to demonstrate the performance of the pro- posed technique. Experimental results show that the proposed method bears great potential to provide a sensitive approach for determining the white matter integrity in human brain. Another core objective of this work is to develop a class of new modeling and clustering techniques with improved performance and noise resistance for separating reconstructed white matter tracts to facilitate clinical group analysis. Different strategies are presented to handle different scenarios. For whole brain tractography reconstructed white matter tracts, a Fourier descriptor model and a clustering algorithm based on multivariate Gaussian mixture model and expectation maximization are proposed. Outliers are easily handled in this framework. Real DTI data experimental results show that the proposed algorithm is relatively effective and may offer an alternative for existing white matter fiber clustering methods. For a small amount of white matter fibers, a modeling and clustering algorithm with the capability of handling white matter fibers with unequal length and sharing no common starting region is also proposed and evaluated with real DTI data

    Segmentation of corpus callosum using diffusion tensor imaging: validation in patients with glioblastoma

    Get PDF
    Abstract Background This paper presents a three-dimensional (3D) method for segmenting corpus callosum in normal subjects and brain cancer patients with glioblastoma. Methods Nineteen patients with histologically confirmed treatment naïve glioblastoma and eleven normal control subjects underwent DTI on a 3T scanner. Based on the information inherent in diffusion tensors, a similarity measure was proposed and used in the proposed algorithm. In this algorithm, diffusion pattern of corpus callosum was used as prior information. Subsequently, corpus callosum was automatically divided into Witelson subdivisions. We simulated the potential rotation of corpus callosum under tumor pressure and studied the reproducibility of the proposed segmentation method in such cases. Results Dice coefficients, estimated to compare automatic and manual segmentation results for Witelson subdivisions, ranged from 94% to 98% for control subjects and from 81% to 95% for tumor patients, illustrating closeness of automatic and manual segmentations. Studying the effect of corpus callosum rotation by different Euler angles showed that although segmentation results were more sensitive to azimuth and elevation than skew, rotations caused by brain tumors do not have major effects on the segmentation results. Conclusions The proposed method and similarity measure segment corpus callosum by propagating a hyper-surface inside the structure (resulting in high sensitivity), without penetrating into neighboring fiber bundles (resulting in high specificity)

    Robust thalamic nuclei segmentation method based on local diffusion magnetic resonance properties.

    Get PDF
    The thalamus is an essential relay station in the cortical-subcortical connections. It is characterized by a complex anatomical architecture composed of numerous small nuclei, which mediate the involvement of the thalamus in a wide range of neurological functions. We present a novel framework for segmenting the thalamic nuclei, which explores the orientation distribution functions (ODFs) from diffusion magnetic resonance images at 3 T. The differentiation of the complex intra-thalamic microstructure is improved by using the spherical harmonic (SH) representation of the ODFs, which provides full angular characterization of the diffusion process in each voxel. The clustering was performed using the k-means algorithm initialized in a data-driven manner. The method was tested on 35 healthy volunteers and our results show a robust, reproducible and accurate segmentation of the thalamus in seven nuclei groups. Six of them closely matched the anatomy and were labeled as anterior, ventral anterior, medio-dorsal, ventral latero-ventral, ventral latero-dorsal and pulvinar, while the seventh cluster included the centro-lateral and the latero-posterior nuclei. Results were evaluated both qualitatively, by comparing the segmented nuclei to the histological atlas of Morel, and quantitatively, by measuring the clusters' extent and the clusters' spatial distribution across subjects and hemispheres. We also showed the robustness of our approach across different sequences and scanners, as well as intra-subject reproducibility of the segmented clusters using additional two scan-rescan datasets. We also observed an overlap between the path of the main long-connection tracts passing through the thalamus and the spatial distribution of the nuclei identified with our clustering algorithm. Our approach, based on SH representations of the ODFs, outperforms the one based on angular differences between the principle diffusion directions, which is considered so far as state-of-the-art method. Our findings show an anatomically reliable segmentation of the main groups of thalamic nuclei that could be of potential use in many clinical applications

    Manifold-driven Grouping of Skeletal Muscle Fibers

    Get PDF
    In this report, we present a manifold clustering method for the classification of fibers obtained from diffusion tensor images (DTI) of the human skeletal muscle. To this end, we propose the use of angular Hilbertian metrics between multivariate normal distributions to define a family of distances between tensors that we generalize to fibers. The obtained metrics between fiber tracts encompasses both diffusion and localization information. As far as clustering is concerned, we use two methods. The first approach is based on diffusion maps and k-means clustering in the spectral embedding space. The second approach uses a linear programming formulation of prototype-based clustering. This formulation allows for classification over manifolds without the necessity to embed the data in low dimensional spaces and determines automatically the number of clusters. The experimental validation of the proposed framework is done using a manually annotated significant dataset of DTI of the calf muscle for healthy and diseased subjects
    corecore