9,262 research outputs found

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    Nano-networks communication architecture: Modeling and functions

    Get PDF
    Nano-network is a communication network at the Nano-scale between Nano-devices. Nano-devices face certain challenges in functionalities, because of limitations in their processing capabilities and power management. Hence, these devices are expected to perform simple tasks, which require different and novel approaches. In order to exploit different functionalities of Nano-machines, we need to manage and control a set of Nano-devices in a full Nano-network using an appropriate architecture. This step will enable unrivaled applications in the biomedical, environmental and industrial fields. By the arrival of Internet of Things (IoT) the use of the Internet has transformed, where various types of objects, sensors and devices can interact making our future networks connect nearly everything from traditional network devices to people. In this paper, we provide an unified architectural model of Nano-network communication with a layered approach combining Software Defined Network (SDN), Network Function Virtualization (NFV) and IoT technologies and present how this combination can help in Nano-networks’ context. Consequently, we propose a set of functions and use cases that can be implemented by Nano-devices and discuss the significant challenges in implementing these functions with Nano-technology paradigm and the open research issues that need to be addressed.Peer ReviewedPostprint (published version

    Designing Automated Deployment Strategies of Face Recognition Solutions in Heterogeneous IoT Platforms

    Get PDF
    In this paper, we tackle the problem of deploying face recognition (FR) solutions in heterogeneous Internet of Things (IoT) platforms. The main challenges are the optimal deployment of deep neural networks (DNNs) in the high variety of IoT devices (e.g., robots, tablets, smartphones, etc.), the secure management of biometric data while respecting the users’ privacy, and the design of appropriate user interaction with facial verification mechanisms for all kinds of users. We analyze different approaches to solving all these challenges and propose a knowledge-driven methodology for the automated deployment of DNN-based FR solutions in IoT devices, with the secure management of biometric data, and real-time feedback for improved interaction. We provide some practical examples and experimental results with state-of-the-art DNNs for FR in Intel’s and NVIDIA’s hardware platforms as IoT devices.This work was supported by the SHAPES project, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 857159, and in part by the Spanish Centre for the Development of Industrial Technology (CDTI) through the Project ÉGIDA—RED DE EXCELENCIA EN TECNOLOGIAS DE SEGURIDAD Y PRIVACIDAD under Grant CER20191012

    Security and privacy issues of physical objects in the IoT: Challenges and opportunities

    Get PDF
    In the Internet of Things (IoT), security and privacy issues of physical objects are crucial to the related applications. In order to clarify the complicated security and privacy issues, the life cycle of a physical object is divided into three stages of pre-working, in-working, and post-working. On this basis, a physical object-based security architecture for the IoT is put forward. According to the security architecture, security and privacy requirements and related protecting technologies for physical objects in different working stages are analyzed in detail. Considering the development of IoT technologies, potential security and privacy challenges that IoT objects may face in the pervasive computing environment are summarized. At the same time, possible directions for dealing with these challenges are also pointed out
    • …
    corecore