3 research outputs found

    A high-performance boundary element method and its applications in engineering

    Get PDF
    As a semi-numerical and semi-analytical method, owing to the inherent advantage, of boundary-only discretisation, the boundary element method (BEM) has been widely applied to problems with complicated geometries, stress concentration problems, infinite domain problems, and many others. However, domain integrals and non-symmetrical and dense matrix systems are two obstacles for BEM which have hindered the its further development and application. This thesis is aimed at proposing a high-performance BEM to tackle the above two drawbacks and broaden the application scope of BEM. In this thesis, a detailed introduction to the traditional BEM is given and several popular algorithms are introduced or proposed to enhance the performance of BEM. Numerical examples in heat conduction analysis, thermoelastic analysis and thermoelastic fracture problems are performed to assess the efficiency and correction of the algorithms. In addition, necessary theoretical derivations are embraced for establishing novel boundary integral equations (BIEs) for specific engineering problems. The following three parts are the main content of this thesis. (1) The first part (Part II consisting of two chapters) is aimed at heat conduction analysis by BEM. The coefficient matrix of equations formed by BEM in solving problems is fully-populated which occupy large computer memory. To deal with that, the fast multipole method (FMM) is introduced to energize the line integration boundary element method (LIBEM) to performs better in efficiency. In addition, to compute domain integrals with known or unknown integrand functions which are caused by heat sources or heterogeneity, a novel BEM, the adaptive orthogonal interpolation moving least squares (AOIMLS) method enhanced LIBEM, which also inherits the advantage of boundary-only discretisation, is proposed. Unlike LIBEM, which is an accurate and stable method for computing domain integrals, but only works when the mathematical expression of integral function in domain integrals is known, the AOIMLS enhanced LIBEM can compute domain integrals with known or unknown integral functions, which ensures all the nonlinear and nonhomogeneous problems can be solved without domain discretisation. In addition, the AOIMLS can adaptively avoid singular or ill-conditioned moment matrices, thus ensuring the stability of the calculation results. (2) In the second part (Part III consisting of four chapters), the thermoelastic problems and fracture problems are the main objectives. Due to considering thermal loads, domain integrals appear in the BIEs of the thermoelastic problems, and the expression of integrand functions is known or not depending on the temperature distribution given or not, the AOIMLS enhanced LIBEM is introduced to conduct thermoelasticity analysis thereby. Besides, a series of novel unified boundary integral equations based on BEM and DDM are derived for solving fracture problems and thermoelastic fracture problems in finite and infinite domains. Two sets of unified BIEs are derived for fracture problems in finite and infinite domains based on the direct BEM and DDM respectively, which can provide accurate and stable results. Another two sets of BIEs are addressed by employing indirect BEM and DDM, which cannot ensure a stable result, thereby a modified indirect BEM is proposed which performs much more stable. Moreover, a set of novel BIEs based on the direct BEM and DDM for cracked domains under thermal stress is proposed. (3) In the third part (Part IV consisting of one chapter), a high-efficiency combined BEM and discrete element method (DEM) is proposed to compute the inner stress distribution and particle breakage of particle assemblies based on the solution mapping scheme. For the stress field computation of particles with similar geometry, a template particle is used as the representative particle, so that only the related coefficient matrices of one template particle in the local coordinate system are needed to be calculated, while the coefficient matrices of the other particles, can be obtained by mapping between the local and global coordinate systems. Thus, the combined BEM and DEM is much more effective when modelling a large-scale particle system with a small number of distinct possible particle shapes. Furthermore, with the help of the Hoek-Brown criterion, the possible cracks or breakage paths of a particle can be obtained

    Fast, High-Order Accurate Integral Equation Methods and Application to PDE-Constrained Optimization

    Full text link
    Over the last several decades, the development of fast, high-order accurate, and robust integral equation methods for computational physics has gained increasing attention. Using integral equation formulation as a global statement in contrast to a local partial differential equation (PDE) formulation offers several unique advantages. For homogeneous PDEs, the boundary integral equation (BIE) formulation allows accurate handling of complex and moving geometries, and it only requires a mesh on the boundary, which is much easier to generate as a result of the dimension reduction. With the acceleration of fast algorithms like the Fast Multipole Method (FMM), the computational complexity can be reduced to O(N), where N is the number of degrees of freedom on the boundary. Using standard potential theory decomposition, inhomogeneous PDEs can be solved by evaluating a volume potential over the inhomogeneous source domain, followed by a solution of the homogeneous part. Despite the advantages of BIE methods in easy meshing, near-optimal efficiency, and well conditioning, the accurate evaluation of nearly singular integrals is a classical problem that needs to be addressed to enable simulations for practical applications. In the first half of this thesis, we develop a series of product integration schemes to solve this close evaluation problem. The use of differential forms provides a dimensional-agnostic way of integrating the nearly singular kernels against polynomial basis functions analytically. So the problem of singular integration gets reduced to a matter of source function approximation. In 2D, this procedure has been traditionally portrayed by building a connection to complex Cauchy integral, then supplemented by a complex monomial approximation. In 33D, the closed differential form requirement leads to the design of a new function approximation scheme based on harmonic polynomials and quaternion algebra. Under a similar framework, we develop a high-order accurate product integration scheme for evaluating singular and nearly singular volume integral equations (VIE) in complex domains using regular Cartesian grids discretization. A high-order accurate source term approximation scheme matching smooth volume integrals on irregular cut cells is developed, which requires no function extension. BIE methods have been widely used for studying Stokes flows, incompressible flows at low Reynolds' number, in both biological systems and microfluidics. In the second half of this thesis, we employ the BIE methods to simulate and optimize Stokes fluid-structure interactions. In 2D, a hybrid computational method is presented for simulating cilia-generated fluid mixing as well as the cilia-particle hydrodynamics. The method is based on a BIE formulation for confining geometries and rigid particles, and the method of regularized Stokeslets for the cilia. In 3D, we use the time-independent envelop model for arbitrary axisymmetric microswimmers to minimize the power loss while maintaining a target swimming speed. This is a quadratic optimization problem in terms of the slip velocity due to the linearity of Stokes flow. Under specified reduced volume constraint, we find prolate spheroids to be the most efficient micro-swimmer among various families of shapes we considered. We then derive an adjoint-based formulation for computing power loss sensitivities in terms of a time-dependent slip profile by introducing an auxiliary time-periodic function, and find that the optimal swimmer displays one or multiple traveling waves, reminiscent of the typical metachronal waves observed in ciliated microswimmers.PHDApplied and Interdisciplinary MathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169695/1/hszhu_1.pd
    corecore