8,748 research outputs found

    A unified approach to moving object detection in 2D and 3D scenes

    Full text link

    Video foreground extraction for mobile camera platforms

    Get PDF
    Foreground object detection is a fundamental task in computer vision with many applications in areas such as object tracking, event identification, and behavior analysis. Most conventional foreground object detection methods work only in a stable illumination environments using fixed cameras. In real-world applications, however, it is often the case that the algorithm needs to operate under the following challenging conditions: drastic lighting changes, object shape complexity, moving cameras, low frame capture rates, and low resolution images. This thesis presents four novel approaches for foreground object detection on real-world datasets using cameras deployed on moving vehicles.The first problem addresses passenger detection and tracking tasks for public transport buses investigating the problem of changing illumination conditions and low frame capture rates. Our approach integrates a stable SIFT (Scale Invariant Feature Transform) background seat modelling method with a human shape model into a weighted Bayesian framework to detect passengers. To deal with the problem of tracking multiple targets, we employ the Reversible Jump Monte Carlo Markov Chain tracking algorithm. Using the SVM classifier, the appearance transformation models capture changes in the appearance of the foreground objects across two consecutives frames under low frame rate conditions. In the second problem, we present a system for pedestrian detection involving scenes captured by a mobile bus surveillance system. It integrates scene localization, foreground-background separation, and pedestrian detection modules into a unified detection framework. The scene localization module performs a two stage clustering of the video data.In the first stage, SIFT Homography is applied to cluster frames in terms of their structural similarity, and the second stage further clusters these aligned frames according to consistency in illumination. This produces clusters of images that are differential in viewpoint and lighting. A kernel density estimation (KDE) technique for colour and gradient is then used to construct background models for each image cluster, which is further used to detect candidate foreground pixels. Finally, using a hierarchical template matching approach, pedestrians can be detected.In addition to the second problem, we present three direct pedestrian detection methods that extend the HOG (Histogram of Oriented Gradient) techniques (Dalal and Triggs, 2005) and provide a comparative evaluation of these approaches. The three approaches include: a) a new histogram feature, that is formed by the weighted sum of both the gradient magnitude and the filter responses from a set of elongated Gaussian filters (Leung and Malik, 2001) corresponding to the quantised orientation, which we refer to as the Histogram of Oriented Gradient Banks (HOGB) approach; b) the codebook based HOG feature with branch-and-bound (efficient subwindow search) algorithm (Lampert et al., 2008) and; c) the codebook based HOGB approach.In the third problem, a unified framework that combines 3D and 2D background modelling is proposed to detect scene changes using a camera mounted on a moving vehicle. The 3D scene is first reconstructed from a set of videos taken at different times. The 3D background modelling identifies inconsistent scene structures as foreground objects. For the 2D approach, foreground objects are detected using the spatio-temporal MRF algorithm. Finally, the 3D and 2D results are combined using morphological operations.The significance of these research is that it provides basic frameworks for automatic large-scale mobile surveillance applications and facilitates many higher-level applications such as object tracking and behaviour analysis

    A Unified Framework for Mutual Improvement of SLAM and Semantic Segmentation

    Full text link
    This paper presents a novel framework for simultaneously implementing localization and segmentation, which are two of the most important vision-based tasks for robotics. While the goals and techniques used for them were considered to be different previously, we show that by making use of the intermediate results of the two modules, their performance can be enhanced at the same time. Our framework is able to handle both the instantaneous motion and long-term changes of instances in localization with the help of the segmentation result, which also benefits from the refined 3D pose information. We conduct experiments on various datasets, and prove that our framework works effectively on improving the precision and robustness of the two tasks and outperforms existing localization and segmentation algorithms.Comment: 7 pages, 5 figures.This work has been accepted by ICRA 2019. The demo video can be found at https://youtu.be/Bkt53dAehj

    Fast Multi-frame Stereo Scene Flow with Motion Segmentation

    Full text link
    We propose a new multi-frame method for efficiently computing scene flow (dense depth and optical flow) and camera ego-motion for a dynamic scene observed from a moving stereo camera rig. Our technique also segments out moving objects from the rigid scene. In our method, we first estimate the disparity map and the 6-DOF camera motion using stereo matching and visual odometry. We then identify regions inconsistent with the estimated camera motion and compute per-pixel optical flow only at these regions. This flow proposal is fused with the camera motion-based flow proposal using fusion moves to obtain the final optical flow and motion segmentation. This unified framework benefits all four tasks - stereo, optical flow, visual odometry and motion segmentation leading to overall higher accuracy and efficiency. Our method is currently ranked third on the KITTI 2015 scene flow benchmark. Furthermore, our CPU implementation runs in 2-3 seconds per frame which is 1-3 orders of magnitude faster than the top six methods. We also report a thorough evaluation on challenging Sintel sequences with fast camera and object motion, where our method consistently outperforms OSF [Menze and Geiger, 2015], which is currently ranked second on the KITTI benchmark.Comment: 15 pages. To appear at IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017). Our results were submitted to KITTI 2015 Stereo Scene Flow Benchmark in November 201

    Co-Fusion: Real-time Segmentation, Tracking and Fusion of Multiple Objects

    Get PDF
    In this paper we introduce Co-Fusion, a dense SLAM system that takes a live stream of RGB-D images as input and segments the scene into different objects (using either motion or semantic cues) while simultaneously tracking and reconstructing their 3D shape in real time. We use a multiple model fitting approach where each object can move independently from the background and still be effectively tracked and its shape fused over time using only the information from pixels associated with that object label. Previous attempts to deal with dynamic scenes have typically considered moving regions as outliers, and consequently do not model their shape or track their motion over time. In contrast, we enable the robot to maintain 3D models for each of the segmented objects and to improve them over time through fusion. As a result, our system can enable a robot to maintain a scene description at the object level which has the potential to allow interactions with its working environment; even in the case of dynamic scenes.Comment: International Conference on Robotics and Automation (ICRA) 2017, http://visual.cs.ucl.ac.uk/pubs/cofusion, https://github.com/martinruenz/co-fusio
    • …
    corecore