343 research outputs found

    Mixed finite elements for numerical weather prediction

    Full text link
    We show how two-dimensional mixed finite element methods that satisfy the conditions of finite element exterior calculus can be used for the horizontal discretisation of dynamical cores for numerical weather prediction on pseudo-uniform grids. This family of mixed finite element methods can be thought of in the numerical weather prediction context as a generalisation of the popular polygonal C-grid finite difference methods. There are a few major advantages: the mixed finite element methods do not require an orthogonal grid, and they allow a degree of flexibility that can be exploited to ensure an appropriate ratio between the velocity and pressure degrees of freedom so as to avoid spurious mode branches in the numerical dispersion relation. These methods preserve several properties of the C-grid method when applied to linear barotropic wave propagation, namely: a) energy conservation, b) mass conservation, c) no spurious pressure modes, and d) steady geostrophic modes on the ff-plane. We explain how these properties are preserved, and describe two examples that can be used on pseudo-uniform grids: the recently-developed modified RT0-Q0 element pair on quadrilaterals and the BDFM1-\pdg element pair on triangles. All of these mixed finite element methods have an exact 2:1 ratio of velocity degrees of freedom to pressure degrees of freedom. Finally we illustrate the properties with some numerical examples.Comment: Revision after referee comment

    Compatible finite element spaces for geophysical fluid dynamics

    Get PDF
    Compatible finite elements provide a framework for preserving important structures in equations of geophysical uid dynamics, and are becoming important in their use for building atmosphere and ocean models. We survey the application of compatible finite element spaces to geophysical uid dynamics, including the application to the nonlinear rotating shallow water equations, and the three-dimensional compressible Euler equations. We summarise analytic results about dispersion relations and conservation properties, and present new results on approximation properties in three dimensions on the sphere, and on hydrostatic balance properties

    Higher-order compatible finite element schemes for the nonlinear rotating shallow water equations on the sphere

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record.We describe a compatible finite element discretisation for the shallow water equations on the rotating sphere, concentrating on integrating consistent upwind stabilisation into the framework. Although the prognostic variables are velocity and layer depth, the discretisation has a diagnostic potential vorticity that satisfies a stable upwinded advection equation through a Taylor–Galerkin scheme; this provides a mechanism for dissipating enstrophy at the gridscale whilst retaining optimal order consistency. We also use upwind discontinuous Galerkin schemes for the transport of layer depth. These transport schemes are incorporated into a semi-implicit formulation that is facilitated by a hybridisation method for solving the resulting mixed Helmholtz equation. We demonstrate that our discretisation achieves the expected second order convergence and provide results from some standard rotating sphere test problems.Natural Environment Research Council (NERC)Natural Environment Research Council (NERC)Engineering and Physical Sciences Research Council (EPSRC)Engineering and Physical Sciences Research Council (EPSRC

    Supraconservative finite-volume methods for the Euler equations of subsonic compressible flow

    Get PDF
    It has been found advantageous for finite-volume discretizations of flow equations to possess additional (secondary) invariants, next to the (primary) invariants from the constituting conservation laws. The paper presents general (necessary and sufficient) requirements for a method to convectively preserve discrete kinetic energy. The key ingredient is a close discrete consistency between the convective term in the momentum equation and the terms in the other conservation equations (mass, internal energy). As examples, the Euler equations for subsonic (in)compressible flow are discretized with such supra-conservative finite-volume methods on structured as well as unstructured grids

    An edge-based unstructured mesh discretisation in geospherical framework

    Get PDF
    An arbitrary finite-volume approach is developed for discretising partial differential equations governing fluid flows on the sphere. Unconventionally for unstructured-mesh global models, the governing equations are cast in the anholonomic geospherical framework established in computational meteorology. The resulting discretisation retains proven properties of the geospherical formulation, while it offers the flexibility of unstructured meshes in enabling irregular spatial resolution. The latter allows for a global enhancement of the spatial resolution away from the polar regions as well as for a local mesh refinement. A class of non-oscillatory forward-in-time edge-based solvers is developed and applied to numerical examples of three-dimensional hydrostatic flows, including shallow-water benchmarks, on a rotating sphere
    • …
    corecore