10,669 research outputs found

    A large covariance matrix estimator under intermediate spikiness regimes

    Full text link
    The present paper concerns large covariance matrix estimation via composite minimization under the assumption of low rank plus sparse structure. In this approach, the low rank plus sparse decomposition of the covariance matrix is recovered by least squares minimization under nuclear norm plus l1l_1 norm penalization. This paper proposes a new estimator of that family based on an additional least-squares re-optimization step aimed at un-shrinking the eigenvalues of the low rank component estimated at the first step. We prove that such un-shrinkage causes the final estimate to approach the target as closely as possible in Frobenius norm while recovering exactly the underlying low rank and sparsity pattern. Consistency is guaranteed when nn is at least O(p32δ)O(p^{\frac{3}{2}\delta}), provided that the maximum number of non-zeros per row in the sparse component is O(pδ)O(p^{\delta}) with δ≤12\delta \leq \frac{1}{2}. Consistent recovery is ensured if the latent eigenvalues scale to pαp^{\alpha}, α∈[0,1]\alpha \in[0,1], while rank consistency is ensured if δ≤α\delta \leq \alpha. The resulting estimator is called UNALCE (UNshrunk ALgebraic Covariance Estimator) and is shown to outperform state of the art estimators, especially for what concerns fitting properties and sparsity pattern detection. The effectiveness of UNALCE is highlighted on a real example regarding ECB banking supervisory data

    Joint Coding and Scheduling Optimization in Wireless Systems with Varying Delay Sensitivities

    Full text link
    Throughput and per-packet delay can present strong trade-offs that are important in the cases of delay sensitive applications.We investigate such trade-offs using a random linear network coding scheme for one or more receivers in single hop wireless packet erasure broadcast channels. We capture the delay sensitivities across different types of network applications using a class of delay metrics based on the norms of packet arrival times. With these delay metrics, we establish a unified framework to characterize the rate and delay requirements of applications and optimize system parameters. In the single receiver case, we demonstrate the trade-off between average packet delay, which we view as the inverse of throughput, and maximum ordered inter-arrival delay for various system parameters. For a single broadcast channel with multiple receivers having different delay constraints and feedback delays, we jointly optimize the coding parameters and time-division scheduling parameters at the transmitters. We formulate the optimization problem as a Generalized Geometric Program (GGP). This approach allows the transmitters to adjust adaptively the coding and scheduling parameters for efficient allocation of network resources under varying delay constraints. In the case where the receivers are served by multiple non-interfering wireless broadcast channels, the same optimization problem is formulated as a Signomial Program, which is NP-hard in general. We provide approximation methods using successive formulation of geometric programs and show the convergence of approximations.Comment: 9 pages, 10 figure

    Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent

    Get PDF
    First-order methods play a central role in large-scale machine learning. Even though many variations exist, each suited to a particular problem, almost all such methods fundamentally rely on two types of algorithmic steps: gradient descent, which yields primal progress, and mirror descent, which yields dual progress. We observe that the performances of gradient and mirror descent are complementary, so that faster algorithms can be designed by LINEARLY COUPLING the two. We show how to reconstruct Nesterov's accelerated gradient methods using linear coupling, which gives a cleaner interpretation than Nesterov's original proofs. We also discuss the power of linear coupling by extending it to many other settings that Nesterov's methods cannot apply to.Comment: A new section added; polished writin

    Structured sparsity-inducing norms through submodular functions

    Get PDF
    Sparse methods for supervised learning aim at finding good linear predictors from as few variables as possible, i.e., with small cardinality of their supports. This combinatorial selection problem is often turned into a convex optimization problem by replacing the cardinality function by its convex envelope (tightest convex lower bound), in this case the L1-norm. In this paper, we investigate more general set-functions than the cardinality, that may incorporate prior knowledge or structural constraints which are common in many applications: namely, we show that for nondecreasing submodular set-functions, the corresponding convex envelope can be obtained from its \lova extension, a common tool in submodular analysis. This defines a family of polyhedral norms, for which we provide generic algorithmic tools (subgradients and proximal operators) and theoretical results (conditions for support recovery or high-dimensional inference). By selecting specific submodular functions, we can give a new interpretation to known norms, such as those based on rank-statistics or grouped norms with potentially overlapping groups; we also define new norms, in particular ones that can be used as non-factorial priors for supervised learning

    A unified framework for approximation in inverse problems for distributed parameter systems

    Get PDF
    A theoretical framework is presented that can be used to treat approximation techniques for very general classes of parameter estimation problems involving distributed systems that are either first or second order in time. Using the approach developed, one can obtain both convergence and stability (continuous dependence of parameter estimates with respect to the observations) under very weak regularity and compactness assumptions on the set of admissible parameters. This unified theory can be used for many problems found in the recent literature and in many cases offers significant improvements to existing results
    • …
    corecore