595 research outputs found

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Interior point methods : current status and future directions

    Get PDF
    Cover title.Includes bibliographical references (leaves 23-24).Robert Freund and Shinji Mizuno

    Interior point methods : current status and future directions

    Get PDF
    Cover title.Includes bibliographical references (leaves 23-24).Robert Freund and Shinji Mizuno

    Projection methods in conic optimization

    Get PDF
    There exist efficient algorithms to project a point onto the intersection of a convex cone and an affine subspace. Those conic projections are in turn the work-horse of a range of algorithms in conic optimization, having a variety of applications in science, finance and engineering. This chapter reviews some of these algorithms, emphasizing the so-called regularization algorithms for linear conic optimization, and applications in polynomial optimization. This is a presentation of the material of several recent research articles; we aim here at clarifying the ideas, presenting them in a general framework, and pointing out important techniques

    A sequential semidefinite programming method and an application in passive reduced-order modeling

    Full text link
    We consider the solution of nonlinear programs with nonlinear semidefiniteness constraints. The need for an efficient exploitation of the cone of positive semidefinite matrices makes the solution of such nonlinear semidefinite programs more complicated than the solution of standard nonlinear programs. In particular, a suitable symmetrization procedure needs to be chosen for the linearization of the complementarity condition. The choice of the symmetrization procedure can be shifted in a very natural way to certain linear semidefinite subproblems, and can thus be reduced to a well-studied problem. The resulting sequential semidefinite programming (SSP) method is a generalization of the well-known SQP method for standard nonlinear programs. We present a sensitivity result for nonlinear semidefinite programs, and then based on this result, we give a self-contained proof of local quadratic convergence of the SSP method. We also describe a class of nonlinear semidefinite programs that arise in passive reduced-order modeling, and we report results of some numerical experiments with the SSP method applied to problems in that class

    Introducing Interior-Point Methods for Introductory Operations Research Courses and/or Linear Programming Courses

    Get PDF
    In recent years the introduction and development of Interior-Point Methods has had a profound impact on optimization theory as well as practice, influencing the field of Operations Research and related areas. Development of these methods has quickly led to the design of new and efficient optimization codes particularly for Linear Programming. Consequently, there has been an increasing need to introduce theory and methods of this new area in optimization into the appropriate undergraduate and first year graduate courses such as introductory Operations Research and/or Linear Programming courses, Industrial Engineering courses and Math Modeling courses. The objective of this paper is to discuss the ways of simplifying the introduction of Interior-Point Methods for students who have various backgrounds or who are not necessarily mathematics majors

    Unified Analysis of Kernel-Based Interior-Point Methods for \u3cem\u3eP\u3c/em\u3e *(Îș)-LCP

    Get PDF
    We present an interior-point method for the P∗(Îș)-linear complementarity problem (LCP) that is based on barrier functions which are defined by a large class of univariate functions called eligible kernel functions. This class is fairly general and includes the classical logarithmic function and the self-regular functions, as well as many non-self-regular functions as special cases. We provide a unified analysis of the method and give a general scheme on how to calculate the iteration bounds for the entire class. We also calculate the iteration bounds of both long-step and short-step versions of the method for several specific eligible kernel functions. For some of them we match the best known iteration bounds for the long-step method, while for the short-step method the iteration bounds are of the same order of magnitude. As far as we know, this is the first paper that provides a unified approach and comprehensive treatment of interior-point methods for P∗(Îș)-LCPs based on the entire class of eligible kernel functions
    • 

    corecore