448 research outputs found

    Are Electrons Oscillating Photons, Oscillating “Vacuum," or Something Else? The 2015 Panel Discussion: An Unprecedented Engineering Opportunity: A Dynamical Linear Theory of Energy as Light and Matter

    Get PDF
    Platform: What physical attributes separate EM waves, of the enormous band of radio to visible to x-ray, from the high energy narrow band of gamma-ray? From radio to visible to x-ray, telescopes are designed based upon the optical imaging theory; which is an extension of the Huygens-Fresnel diffraction integral. Do we understand the physical properties of gamma rays that defy us to manipulate them similarly? One demonstrated unique property of gamma rays is that they can be converted to elementary particles (electron and positron pair); or a particle-antiparticle pair can be converted into gamma rays. Thus, EM waves and elementary particles, being inter-convertible; we cannot expect to understand the deeper nature of light without succeeding to find structural inter-relationship between photons and particles. This topic is directly relevant to develop a deeper understanding of the nature of light; which will, in turn, help our engineers to invent better optical instruments

    Simulating Maxwell–Schrödinger Equations by High-Order Symplectic FDTD Algorithm

    Get PDF
    A novel symplectic algorithm is proposed to solve the Maxwell–Schrödinger (M–S) system for investigating light–matter interaction. Using the fourth-order symplectic integration and fourth-order collocated differences, M–S equations are discretized in temporal and spatial domains, respectively. The symplectic finite-difference time-domain (SFDTD) algorithm is developed for accurate and efficient study of coherent interaction between electromagnetic fields and artificial atoms. Particularly, the Dirichlet boundary condition is adopted for modeling the Rabi oscillation problems under the semiclassical framework. To implement the Dirichlet boundary condition, image theory is introduced, tailored to the high-order collocated differences. For validating the proposed SFDTD algorithm, three-dimensional numerical studies of the population inversion in the Rabi oscillation are presented. Numerical results show that the proposed high-order SFDTD(4, 4) algorithm exhibits better numerical performance than the conventional FDTD(2, 2) approach at the aspects of accuracy and efficiency for the long-term simulation. The proposed algorithm opens up a promising way toward a high-accurate energy-conservation modeling and simulation of complex dynamics in nanoscale light–matter interaction

    Dynamics of Current, Charge and Mass

    Full text link
    Electricity plays a special role in our lives and life. Equations of electron dynamics are nearly exact and apply from nuclear particles to stars. These Maxwell equations include a special term the displacement current (of vacuum). Displacement current allows electrical signals to propagate through space. Displacement current guarantees that current is exactly conserved from inside atoms to between stars, as long as current is defined as Maxwell did, as the entire source of the curl of the magnetic field. We show how the Bohm formulation of quantum mechanics allows easy definition of current. We show how conservation of current can be derived without mention of the polarization or dielectric properties of matter. Matter does not behave the way physicists of the 1800's thought it does with a single dielectric constant, a real positive number independent of everything. Charge moves in enormously complicated ways that cannot be described in that way, when studied on time scales important today for electronic technology and molecular biology. Life occurs in ionic solutions in which charge moves in response to forces not mentioned or described in the Maxwell equations, like convection and diffusion. Classical derivations of conservation of current involve classical treatments of dielectrics and polarization in nearly every textbook. Because real dielectrics do not behave in a classical way, classical derivations of conservation of current are often distrusted or even ignored. We show that current is conserved exactly in any material no matter how complex the dielectric, polarization or conduction currents are. We believe models, simulations, and computations should conserve current on all scales, as accurately as possible, because physics conserves current that way. We believe models will be much more successful if they conserve current at every level of resolution, the way physics does.Comment: Version 4 slight reformattin

    Universal Vector-Scalar Potential Framework for Inhomogeneous Electromagnetic System and Its Application in Semiclassical Quantum Electromagnetics

    Get PDF
    In this work, numerical solution to a general electromagnetic (EM) system is studied using a formalism based on the formulas for the E-B-A-φ formulas with different gauge conditions. The finite-difference time-domain (FDTD) method is employed to discretize these formulas. In addition, the convolutional perfectly matched layer (CPML) technique is successfully applied to absorb outgoing scattered waves described by the proposed formulas. The gauge invariance of EM fields in inhomogeneous environment is demonstrated by numerical examples. Moreover, the proposed EM framework integrated with the Schrödinger equation is introduced to investigate the mesoscopic phenomenon for light-matter interaction, which is useful to design laser pulses for controlling discrete quantum states. The work offers a simple and general numerical EM framework, which is essential to bridge the classical EM and quantum mechanical systems

    Multi-dimensional modeling and simulation of semiconductor nanophotonic devices

    Get PDF
    Self-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic devices is an important tool in the development of future integrated light sources and quantum devices. Simulations can guide important technological decisions by revealing performance bottlenecks in new device concepts, contribute to their understanding and help to theoretically explore their optimization potential. The efficient implementation of multi-dimensional numerical simulations for computer-aided design tasks requires sophisticated numerical methods and modeling techniques. We review recent advances in device-scale modeling of quantum dot based single-photon sources and laser diodes by self-consistently coupling the optical Maxwell equations with semiclassical carrier transport models using semi-classical and fully quantum mechanical descriptions of the optically active region, respectively. For the simulation of realistic devices with complex, multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of the photonic structures. For electrically driven devices, we introduced novel discretization and parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semiconductors at cryogenic temperature. Our methodical advances are demonstrated on various applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon sources
    • …
    corecore