490 research outputs found

    Design of a CMOS-based microwave active channelized bandpass filter

    Get PDF
    A two-branch microwave active bandpass filter is designed through the channelized filtering technique as well as the transversal concept. Both the main and the auxiliary branches, connected without power dividers/combiners, rely on C-coupled active third order Chebyshev bandpass filters. A lumped element signal delay circuit is also introduced in the main channel. Active inductors based on the gyrator-C topology, are involved in the Chebyshev filters’ structure. CMOS-based Operational Transconductor Amplifier (OTA) circuits are the building blocks of these inductors. The proposed active transversal channelized filter produces an elliptic narrow band response, centered at 1.13 GHz. Simulation results, obtained by means of the PSPICE code according to the 0.18 μm TSMC MOS technology, indicate excellent performances illustrating good impedance matching, low insertion losses and high selectivity. Finally, the noise analysis shows that the filter has a low noise figure in the bandwidth

    Design and fabrication of filters based on surface acoustic wave devices

    Get PDF
    The aim of this thesis was to extend previous work to SAW resonator based wideband bandpass filters on LiNbO3 substrates. In order to accomplish this aim, it was necessary to: 1) apply coupling of modes (COM) theory 2) develop custom fabrication techniques for black LiNbO3 substrates 3) understand the critical issues in fabricating a wideband bandpass SAW filter. This thesis discusses the issues that must be addressed in order to achieve successful devices

    Development of tunable and miniature microwave filters for modern wireless communications

    Get PDF
    Due to the increasing demand for new wireless services and applications, the high level of integration and the coexistence of multi-standard (MS) or multi-band operations into a single device are becoming defining trends in designing microwave filters. This has driven considerable technological advances in reconfigurable/tunable and miniaturized filters. More specifically, reconfigurable/tunable filters that tune to different frequency bands instead of classical filter banks have great potential to significantly reduce the system size and complexity; while reducing the filter size becomes essential to achieve the highest degree of integration density in compact and portable wireless devices. In the light of this scenario, the objective of this dissertation is to develop the new design technologies, concepts and filtering configurations for tunable microstrip filters and compact passive microwave filters. To this aim, this dissertation is divided into two main parts. The first part (Part I) focuses on the designs of novel varactor-tuned microstrip filters with advanced performances. In this aspect, new topologies for realizing tunable lowpass and highpass filters are firstly developed. State-of-the-art performances, including wide tuning range, high selectivity with multiple transmission zeros, low insertion loss and compact size for all the tuning states are obtained in both of these filters. Secondly, two novel classes of tunable bandpass filters are presented. One of them is designed based on varactor-loaded parallel-coupled microstrip lines (PCML) and short-circuited stubs, which allows the lower passband edge together with two transmission zeros located around the lower passband skirt to be reconfigured separately. While the other tunable bandpass filter is constructed by the combination of tunable bandpass and lowpass filters, featuring both centre frequency and bandwidth tunabilities, as well as high selectivity with abundant transmission zeros. Furthermore, a new concept of tunable lossy filter is demonstrated, which attempts to achieve an equivalent high-Q tunable performance by using low-Q resonators. This concept makes the presented tunable combline filter interesting for some frequency-agile applications in which the low in-band loss variation and high selectivity are much desired while the absolute insertion loss can be a tradeoff. The second part (Part II) is devoted to the design of miniaturized passive microwave filters with improved characteristics. For this, the concept of artificial right-handed and left-handed transmission lines are applied to the signal interference filtering topology, which results in a compact circuit size and good out-of-band performance. In particular, for a further size reduction, such filter is implemented in the forms of multilayered structure by using liquid crystal polymer (LCP) technology. Additionally, another two types of miniaturized bandpass filters using stepped impedance resonators are demonstrated, which are implemented based on different fabrication processes (i.e. LCP bonded multilayer PCB technology and a standard planar PCB technology). Among their main features, the compact size, wide passband, broad stopband with multiple transmission zeros and circuit simplicity are highlighted. For all the proposed design techniques and filtering structures, exhaustive theoretical analyses are done, and design equations and guide rules are provided. Furthermore, all the proposed schemes and/or ideas have been experimentally validated through the design, implementation and measurement of different filters. The fabrication processes of multilayer technology utilized: liquid crystal polymer (LCP) technology and liquid crystal polymer (LCP) bonded multilayer printed circuit board (PCB) technology, are also demonstrated for reference. All of the results achieved in this dissertation make the proposed filters very attractive for their use in modern wireless communication systems

    Development of turnable and miniature microwave filters for modern wireless communication

    Get PDF
    Due to the increasing demand for new wireless services and applications, the high level of integration and the coexistence of multi-standard (MS) or multi-band operations into a single device are becoming defining trends in designing microwave filters. This has driven considerable technological advances in reconfigurable/tunable and miniaturized filters. More specifically, reconfigurable/tunable filters that tune to different frequency bands instead of classical filter banks have great potential to significantly reduce the system size and complexity; while reducing the filter size becomes essential to achieve the highest degree of integration density in compact and portable wireless devices. In the light of this scenario, the objective of this dissertation is to develop the new design technologies, concepts and filtering configurations for tunable microstrip filters and compact passive microwave filters. To this aim, this dissertation is divided into two main parts. The first part (Part I) focuses on the designs of novel varactor-tuned microstrip filters with advanced performances. In this aspect, new topologies for realizing tunable lowpass and highpass filters are firstly developed. State-of-the-art performances, including wide tuning range, high selectivity with multiple transmission zeros, low insertion loss and compact size for all the tuning states are obtained in both of these filters. Secondly, two novel classes of tunable bandpass filters are presented. One of them is designed based on varactor-loaded parallel-coupled microstrip lines (PCML) and short-circuited stubs, which allows the lower passband edge together with two transmission zeros located around the lower passband skirt to be reconfigured separately. While the other tunable bandpass filter is iii constructed by the combination of tunable bandpass and lowpass filters, featuring both centre frequency and bandwidth tunabilities, as well as high selectivity with abundant transmission zeros. Furthermore, a new concept of tunable lossy filter is demonstrated, which attempts to achieve an equivalent high-Q tunable performance by using low-Q resonators. This concept makes the presented tunable combline filter interesting for some frequency-agile applications in which the low in-band loss variation and high selectivity are much desired while the absolute insertion loss can be a tradeoff. The second part (Part II) is devoted to the design of miniaturized passive microwave filters with improved characteristics. For this, the concept of artificial right-handed and left-handed transmission lines are applied to the signal interference filtering topology, which results in a compact circuit size and good out-of-band performance. In particular, for a further size reduction, such filter is implemented in the forms of multilayered structure by using liquid crystal polymer (LCP) technology. Additionally, another two types of miniaturized bandpass filters using stepped impedance resonators are demonstrated, which are implemented based on different fabrication processes (i.e. LCP bonded multilayer PCB technology and a standard planar PCB technology). Among their main features, the compact size, wide passband, broad stopband with multiple transmission zeros and circuit simplicity are highlighted. For all the proposed design techniques and filtering structures, exhaustive theoretical analyses are done, and design equations and guide rules are provided. Furthermore, all the proposed schemes and/or ideas have been experimentally validated through the design, implementation and measurement of different filters. The fabrication processes of multilayer technology utilized: liquid crystal polymer (LCP) technology and liquid crystal polymer (LCP) bonded multilayer printed circuit board (PCB) technology, are also demonstrated for reference. All of the results achieved in this dissertation make the proposed filters very attractive for their use in modern wireless communication systems.MultiWaves Project (PIRSES-GA-2010-247532) of the Seventh Framework Programme (FP7), European Commission

    A Novel Method for Tuning a Transistor-Based non-Foster Matching Circuit for Electrically Small Wideband Antennas

    Get PDF
    This dissertation reviews the application of non-Foster circuits for wideband antenna matching, and introduces a novel, rapid means of “tuning” the circuit to accommodate variations in antenna loadings. The tuning is accomplished via the judicious addition of a common transistor.A detailed literature search is provided, and non-Foster circuits are discussed in detail, including the myriad of implementations with focus on tuning. A comparison between different tuning methods is presented. The novel tuning method is evaluated via the normalized determinant function to ensure stability. Evaluations include simulations using commercially available software and experimentation to ensure not only stability but also that noise added by the active circuitry is manageable. Wideband stable operation is confirmed by pairing the tunable non-Foster matching circuit with an electrically small, resistively loaded dipole, and performance gains are demonstrated using the tunability feature. The resistively loaded dipole alone demonstrates reasonable performance at higher frequencies, but performance degrades considerably at lower frequencies, when the dipole is electrically small. The tunable non-Foster circuit is shown to alleviate some of this degradation. Additionally, applications other than wideband antenna matching can benefit from tunable non-Foster circuits such as tunable filters and phase shifters, and these are discussed as well. Finally, practical limitations of non-Foster circuits are presented

    Analysis and Design of Low-Cost Waveguide Filters for Wireless Communications

    Get PDF
    The area of research of this thesis is built around advanced waveguide filter structures. Waveguide filters and the waveguide technology in general are renowned for high power capacity, low losses and excellent electromagnetic shielding. Waveguide filters are important components in fixed wireless communications as well as in satellite and radar systems. Furthermore, their advantages and utilization become even greater with increase in frequency, which is a trend in modern communication systems because upper frequency bands offer larger channel capacities. However, waveguide filters are relatively bulky and expensive. To comply with more and more demanding miniaturization and cost-cutting requirements, compactness and economical design represent some of the main contemporary focuses of interest. Approaches that are used to achieve this include use of planar inserts to build waveguide discontinuities, additive manufacturing and substrate integration. At the same time, waveguide filters still need to satisfy opposed stringent requirements like small insertion loss, high selectivity and multiband operation. Another difficulty that metal waveguide components face is integration with other circuitry, especially important when solid-state active devices are included. Thus, improvements of interconnections between waveguide and other transmission interfaces are addressed too. The thesis elaborates the following aspects of work: Further analysis and improved explanations regarding advanced waveguide filters with E-plane inserts developed by the Wireless Communications Research Group, using both cross coupled resonators and extracted pole sections (Experiments with higher filter orders, use of tuning screws, degrees of freedom in design, etc. Thorough performance comparison with competing filter technologies) - Proposing novel E-plane filter sections with I-shaped insets - Extension of the E-plane filtering structures with metal fins to new compact dual band filters with high frequency selectivity and miniaturized diplexers. - Introduction of easy-to-build waveguide filters with polymer insert frames and high-performance low-profile cavity filters, taking advantage of enhanced fabrication capabilities when using additive manufacturing - Developing new substrate integrated filters, as well as circuits used to transfer signals between different interfaces Namely, these are substrate integrated waveguide to metal waveguide planar transitions that do not require any modifications of the metal waveguides. Such novel transitions have been designed both for single and orthogonal signal polarizations

    Emerging Trends in Techniques and Technology as Applied to Filter Design

    Get PDF
    In the last decade, the filter community has innovated both design techniques and the technology used for practical implementation. In design, the philosophy has become "if you can't avoid it, use it", a very practical engineering approach. Modes previously deemed spurious are intentionally used to create in-line networks incorporating real or imaginary transmission zeros and also reduce the number of components and thus further miniaturize; spurious responses are re-routed to increase the passband width or stopband width, frequency variation in couplings is used to create complex transfer functions, with all of these developments using what was previously avoided. Clever implementations of baluns into passive and active networks is resulting in a new generation of noise-immune filters for 5G and beyond. Finally, the use of a diakoptic approach to synthesis has appeared an evolving approach in which small blocks ("singlets", "doublets", etc.) are cascaded to implement larger networks, (reducing the need for very complex synthesis), with this new approach promising a large impact on the implementation of practical structures. Filter technology has migrated towards "observe it and then adapt it", pragmatically repurposing tools not specifically originally intended for the applications. Combinations of surface wave and bulk wave resonators with L-C networks are improving the loss characteristics of filters in the region below 2 GHz. Lightweight alloys and other materials designed for spacecraft are being used in filters intended for space, to provide temperature stability without the use of heavy alloys such as Invar. Fully-enclosed waveguide is being replaced in some cases by planar and quasiplanar structures propagating quasi-waveguide modes. This is generically referred to as SIW (Substrate Integrated Waveguide). Active filters trade noise figure for insertion loss but perhaps will offer advantage in terms of size and chip-level implementation. Finally, the era of reconfiguration might be approaching, as the basic networks are evolving, perhaps lacking only the appearance of lower-loss, higher-IP solid-state tuning elements

    Design and implementation of digital wave filter adaptors

    Get PDF
    corecore